• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Twierdzenie Schreiera



    Podstrony: 1 [2] [3]
    Przeczytaj także...
    Ciąg – jedno z kilku powiązanych pojęć teorii grup pomocne przy badaniu struktury danej grupy; zwykle przez „ciąg” rozumie się opisany dalej ciąg podnormalny. W ogólności ciągiem podgrup danej grupy nazywa się po prostu łańcuch jej podgrup; ciągi podgrup są przypadkiem szczególnym filtracji znanej z algebry abstrakcyjnej.Ciąg – jedno z kilku powiązanych pojęć teorii grup pomocne przy badaniu struktury danej grupy; zwykle przez „ciąg” rozumie się opisany dalej ciąg podnormalny. W ogólności ciągiem podgrup danej grupy nazywa się po prostu łańcuch jej podgrup; ciągi podgrup są przypadkiem szczególnym filtracji znanej z algebry abstrakcyjnej.

    Twierdzenie Schreieratwierdzenie teorii grup mówiące, że dowolne dwa ciągi podnormalne grupy mają równoważne zagęszczenia, tzn. zagęszczenia o izomorficznych ilorazach, niekoniecznie w tej samej kolejności.

    Twierdzenie zostało odkryte przez Ottona Schreiera w 1928 roku w wyniku próby uproszczenia dowodu twierdzenia Jordana–Höldera (dowolne dwa ciągi kompozycyjne danej grupy są równoważne, o ile tylko grupa ma ciąg kompozycyjny); sześć lat później Hans Zassenhaus opublikował lemat nazwany jego nazwiskiem w celu ulepszenia dowodu twierdzenia Schreiera — stąd pochodzi rzadsza, zamiennie stosowana nazwa twierdzenia: twierdzenie Schreiera–Zassenhausa. W przypadku uogólnień niekiedy spotyka się też nazwę twierdzenie Jordana–Höldera–Schreiera.

    Teoria grup – dział algebry, uważany za dość autonomiczną dziedzinę matematyki (w szczególności teoria grup abelowych, czyli przemiennych), który bada własności struktur algebraicznych nazywanych grupami, czyli zbiorów z wyróżnionym łącznym dwuargumentowym działaniem wewnętrznym mającym element neutralny i w którym każdy element jest odwracalny.Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.

    Innym zastosowaniem twierdzenia Schreiera jest możliwość wykazania, że w grupie z (co najmniej jednym) ciągiem kompozycyjnym dowolny ciąg podnormalny można zagęścić do ciągu kompozycyjnego: wystarczy zacząć od ciągów podnormalnego i kompozycyjnego konstruując ich równoważne zagęszczenia zgodnie z twierdzeniem – zagęszczenie ciągu normalnego stanie się ciągiem kompozycyjnym po zastąpieniu wszystkich powtarzających się podgrup w zagęszczeniu pojedynczym egzemplarzem każdej z tych podgrup (zob. lemat do twierdzenia Jordana-Höldera).

    Moduł – struktura algebraiczna będąca uogólnieniem przestrzeni liniowej. Ponieważ grupy abelowe można postrzegać jako moduły nad pierścieniem liczb całkowitych, to teoria modułów znajduje zastosowanie w wielu działach algebry i innych dziedzinach matematyki.Andrzej Białynicki-Birula (ur. 26 grudnia 1935 w Nowogródku) – polski matematyk specjalizujący się w geometrii algebraicznej, jeden z pionierów algebry różniczkowej, profesor zwyczajny, członek rzeczywisty PAN, autor podręczników uniwersyteckich do algebry. Jego wczesne wyniki dotyczyły obszaru na granicy logiki i algebry. Współpracował wówczas z Heleną Rasiową. Opublikował też pracę naukową dotyczącą topologii algebraicznej.

    Sam autor zasygnalizował w przypisach, że twierdzenie zachodzi również dla grup z operatorami, jednak twierdzenie uogólnia się też na moduły, a nawet kraty modularne (dla których zachodzi lemat Zassenhausa pociągający twierdzenie Schreiera).

    Podstrony: 1 [2] [3]




    Warto wiedzieć że... beta

    Twierdzenie to sformalizowana wypowiedź sądu, stosowana we wszystkich naukach ścisłych, składająca się z dwóch zbiorów zdań, które łączy relacja implikacji. Pierwszy zbiór zdań określa ściśle warunki dla których dane twierdzenie jest spełnione i nazywa się założeniem twierdzenia, a drugi zbiór zdań jest właściwym sądem, będącym istotną treścią wypowiadanego twierdzenia i zwany jest tezą twierdzenia.
    Izomorfizm (gr. isos – równy, morphe – kształt) − funkcja wzajemnie jednoznaczna z jednego obiektu matematycznego w drugi, która zachowuje funkcje, relacje i wyróżnione elementy.
    Twierdzenie Jordana-Höldera – twierdzenie teorii grup, które może być udowodnione jako wniosek z ogólniejszego twierdzenia Schreiera.
    Modularność – własność obiektów algebraicznych znana również jako prawo modularności Dedekinda (od nazwiska Richarda Dedekinda), która pierwotnie pojawiła się w teorii grup, następnie przeniesiono je na grunt teorii pierścieni i teorii modułów. Naturalnym kontekstem okazała się jednak teoria krat — kraty spełniające tę własność nazwano kratami modularnymi.
    Hans Julius Zassenhaus (ur. 28 maja 1912 w Koblencji, zm. 21 listopada 1991 w Ohio) – niemiecki matematyk, znany ze swoich prac z zakresu algebry uniwersalnej oraz jako pionier systemów algebry komputerowej.
    Ciąg – jedno z kilku powiązanych pojęć teorii grup pomocne przy badaniu struktury danej grupy; zwykle przez „ciąg” rozumie się opisany dalej ciąg podnormalny. W ogólności ciągiem podgrup danej grupy nazywa się po prostu łańcuch jej podgrup; ciągi podgrup są przypadkiem szczególnym filtracji znanej z algebry abstrakcyjnej.
    Iloczyn kompleksowy – w teorii grup dwuargumentowe działanie wewnętrzne określone na niepustych podzbiorach danej grupy.

    Reklama

    Czas generowania strony: 0.03 sek.