Animacja ilustrująca twierdzenie Pitagorasa
Twierdzenie Pitagorasa – twierdzenie geometrii euklidesowej dotyczące trójkątów prostokątnych, równoważne w istocie jest piątemu pewnikowi Euklidesa o prostych równoległych. W zachodnioeuropejskim kręgu kulturowym przypisuje się je żyjącemu w VI wieku p.n.e. greckiemu matematykowi i filozofowi Pitagorasowi, jednak odkrycia dokonali Babilończycy, którzy znali dodatkowo dwie prostsze metody, przy których błąd jest niewielki. Zapewne znali je przed Pitagorasem starożytni Egipcjanie. Wiadomo też, że jeszcze przed nim znano je w starożytnych Chinach i Indiach.
Pitagoras (gr. Πυθαγόρας, Pythagoras) (ur. ok. 572 p.n.e. na Samos lub w Sydonie, zm. ok. 497 p.n.e. w Metaponcie) – grecki matematyk, filozof, mistyk kojarzony ze słynnym twierdzeniem matematycznym nazwanym jego imieniem. Z relacji anonimowego autora wiadomo, że Pitagoras żył 104 lata", ale większość opisów wzmiankuje jedynie około 80 lat. Według jednej z wersji zmarł w Metaponcie w domu zapaśnika Milona, ocalony z pogromu Krotony, zaś innej - rewolty tej nie przeżył. Według wielu źródeł jego żoną była Teano. MathWorld – encyklopedia matematyczna online, sponsorowana przez Wolfram Research, twórcę i producenta programu Mathematica; współsponsorem jest National Science Foundation (National Science Digital Library).
Suma pól kwadratów „czerwonego” i „niebieskiego” jest równa polu kwadratu „fioletowego”.
W dowolnym trójkącie prostokątnym suma kwadratów długości przyprostokątnych jest równa kwadratowi długości przeciwprostokątnej tego trójkąta. Zgodnie z oznaczeniami na rysunku obok zachodzi tożsamość
Twierdzenie odwrotne – dla danego twierdzenia twierdzenie w którym założenie zamieniono z tezą wyjściowego twierdzenia. Niech będzie dane twierdzenie: jeśli A, to B; wtedy twierdzenie odwrotne do niego jest zdaniem jeśli B, to A. Twierdzenie odwrotne do danego prawdziwego twierdzenia nie musi być zdaniem prawdziwym. Twierdzenie odwrotne jest równoważne twierdzeniu przeciwnemu.Elementy (gr. Στοιχεῖα, Stoicheia) – pochodzący z IV wieku p.n.e. traktat arytmetyczny i geometryczny, obejmujący swym zakresem podstawowe zagadnienia obu tych nauk.
a
2
+
b
2
=
c
2
.
{\displaystyle a^{2}+b^{2}=c^{2}.}
Geometrycznie oznacza to, że jeżeli na bokach trójkąta prostokątnego zbudujemy kwadraty, to suma pól kwadratów zbudowanych na przyprostokątnych tego trójkąta będzie równa polu kwadratu zbudowanego na przeciwprostokątnej.
Dwa trójkąty są podobne, gdy ich odpowiednie boki są parami proporcjonalnymi. tzn. gdy można dobrać nazwy dla wierzchołków w pierwszym i drugim trójkącie odpowiednio A,B,C oraz A’,B’,C’ tak, abyMiara Jordana – formalizacja pojęcia rozmiaru, czyli np. długości, pola danej figury, objętości bryły. Nosi ona nazwisko francuskiego matematyka Camille’a Jordana, który wprowadził ją pod koniec dziewiętnastego wieku. Obecnie częściej stosuje się miarę Lebesgue’a będącą uogólnieniem miary Jordana na szerszą klasę zbiorów.
Podstrony: 1 [2] [3] [4] [5]
Warto wiedzieć że... beta
James Abram Garfield (ur. 19 listopada 1831 w Orange, Ohio, zm. 19 września 1881 w Elberon, New Jersey) – dwudziesty prezydent USA (od marca do września 1881).
Twierdzenie Talesa – jedno z najważniejszych twierdzeń geometrii euklidesowej. Tradycja przypisuje jego sformułowanie Talesowi z Miletu.
Pole powierzchni (potocznie po prostu powierzchnia figury lub pole figury) – miara, przyporządkowująca danej figurze nieujemną liczbę w pewnym sensie charakteryzującą jej rozmiar.
Trójkąt – wielokąt o trzech bokach. Trójkąt to najmniejsza (w sensie inkluzji) figura wypukła i domknięta, zawierająca pewne trzy ustalone i niewspółliniowe punkty płaszczyzny (otoczka wypukła wspomnianych trzech punktów).
Library of Congress Control Number (LCCN) – numer nadawany elementom skatalogowanym przez Bibliotekę Kongresu wykorzystywany przez amerykańskie biblioteki do wyszukiwania rekordów bibliograficznych w bazach danych i zamawiania kart katalogowych w Bibliotece Kongresu lub u innych komercyjnych dostawców.
Przystawanie (kongruencja) – w geometrii relacja równoważności figur zdefiniowana poprzez izometrię rozumianą intuicyjnie jako identyczność kształtu i wielkości figury: dwie figury uważa się za przystające (kongruentne), jeśli istnieje izometria między nimi.
Postulat Euklidesa, postulat równoległości, piąty aksjomat Euklidesa – jeden z aksjomatów geometrii euklidesowej. Ma on postać: