• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Twierdzenie

    Przeczytaj także...
    Teoria – z gr. theoría- oglądanie, rozważanie. System pojęć, definicji, aksjomatów i twierdzeń ustalających relacje między tymi pojęciami i aksjomatami, tworzący spójny system pojęciowy opisujący jakąś wybraną fizyczną lub abstrakcyjną dziedzinę.Twierdzenie przeciwstawne (także: kontrapozycja lub transpozycja) – dla danego twierdzenia zdanie orzekające wynikanie zaprzeczenia założenia z zaprzeczenia tezy. Twierdzeniem przeciwstawnym do twierdzenia jeżeli A, to B jest zdanie jeżeli nieprawda, że B, to nieprawda, że A.
    Kurt Gödel (ur. 28 kwietnia 1906 w Brnie, zm. 14 stycznia 1978 w Princeton) – austriacki logik i matematyk, autor twierdzeń z zakresu logiki matematycznej, współautor jednej z aksjomatyk teorii mnogości. Do najbardziej znanych osiągnięć matematycznych Gödla należą twierdzenia o niezupełności i niesprzeczności teorii dedukcyjnych, które obejmują arytmetykę liczb naturalnych.

    Twierdzenie to sformalizowana wypowiedź sądu, stosowana we wszystkich naukach ścisłych, składająca się z dwóch zbiorów zdań, które łączy relacja implikacji. Pierwszy zbiór zdań określa ściśle warunki dla których dane twierdzenie jest spełnione i nazywa się założeniem twierdzenia, a drugi zbiór zdań jest właściwym sądem, będącym istotną treścią wypowiadanego twierdzenia i zwany jest tezą twierdzenia.

    Nauka ścisła - nauka, w której ściśle i dokładnie opisuje oraz modeluje się zjawiska, a także weryfikuje się hipotezy za pomocą doświadczeń i dowodów matematycznych. Do opracowywania danych doświadczalnych stosowana jest statystyka. Nauki ścisłe to nauki matematyczne i nauki przyrodnicze.Twierdzenie odwrotne – dla danego twierdzenia twierdzenie w którym założenie zamieniono z tezą wyjściowego twierdzenia. Niech będzie dane twierdzenie: jeśli A, to B; wtedy twierdzenie odwrotne do niego jest zdaniem jeśli B, to A. Twierdzenie odwrotne do danego prawdziwego twierdzenia nie musi być zdaniem prawdziwym. Twierdzenie odwrotne jest równoważne twierdzeniu przeciwnemu.

    Twierdzenie od sylogizmu, który posiada podobną strukturę zdaniową, odróżnia to, że teza twierdzenia nie wynika bezpośrednio z założeń i wymaga osobnego dowodu, w którym trzeba się odnieść do wcześniejszych twierdzeń przyjętych w ramach danej teorii. Sylogizmy wywiedzione z danego twierdzenia są z kolei często nazywane wnioskami z twierdzenia. Czasami nazywa się je także twierdzeniami trywialnymi.

    Kwantyfikator – termin przyjęty w matematyce i logice matematycznej na oznaczenie zwrotów: dla każdego, istnieje takie i im pokrewnych, a także odpowiadającym im symbolom wiążacym zmienne w formułach. Są podstawowym elementem w rozwoju logiki pierwszego rzędu.Twierdzenie przeciwne do danego twierdzenia T {displaystyle T} to zdanie stwierdzające, że zaprzeczenie założenia tego twierdzenia pociąga za sobą zaprzeczenie jego tezy. Twierdzeniem przeciwnym do twierdzenia jeśli A, to B jest zdanie jeśli nieprawda, że A, to nieprawda, że B. Twierdzenie przeciwne jest równoważne twierdzeniu odwrotnemu i, podobnie jak to ostatnie, nie musi być prawdziwe wraz z twierdzeniem T {displaystyle T} .

    Nie wszystkie twierdzenia przyjęte za prawdziwe w danej teorii posiadają dowód. Część z nich ma charakter twierdzeń pierwotnych, które z natury rzeczy nie mogą być dowiedzione. Takie twierdzenia nazywane są aksjomatami. Inne z kolei twierdzenia są przyjęte w pewnym sensie "na wiarę", gdyż mimo braku dowodu wydają się być prawdziwe we wszystkich znanych przypadkach. Kurt Gödel dowiódł, że w ramach każdej wystarczająco złożonej teorii składającej się z pojęć pierwotnych i aksjomatów występuje zawsze pewien zbiór twierdzeń, które są prawdziwe, ale nie można ich w ramach danej teorii dowieść. Dodajmy, że "wystarczająco złożonej" oznacza tu zwykle "wystarczającej do zapisania pełnej arytmetyki liczb naturalnych". Jest to tzw. twierdzenie Gödla.

    Twierdzenie Gödla to jeden z najbardziej znanych rezultatów logiki matematycznej. W istocie znane są dwa różne twierdzenia Gödla: pierwsze z nich to twierdzenie o niezupełności, drugie zaś to jego wniosek nazywany też twierdzeniem o niedowodliwości niesprzeczności. Oba twierdzenia zostały udowodnione w 1931 roku przez austriackiego matematyka i logika Kurta Gödla. Uważa się również, że twierdzenia te dają negatywną odpowiedź na drugi problem Hilberta, i w ten sposób mają spore znaczenie w filozofii matematyki. Oprócz rozpatrywanych w tym artykule twierdzeń, Gödel udowodnił też twierdzenie o istnieniu modelu i twierdzenie o nierozstrzygalności (patrz: teoria, struktura matematyczna).Aksjomat (postulat, pewnik) (gr. αξιωμα [aksíoma] – godność, pewność, oczywistość) – jedno z podstawowych pojęć logiki matematycznej. Od czasów Euklidesa uznawano, że aksjomaty to zdania przyjmowane za prawdziwe, których nie dowodzi się w obrębie danej teorii matematycznej. We współczesnej matematyce definicja aksjomatu jest nieco inna:

    Dla uproszczenia część twierdzeń jest podawana w formie jednego zdania złożonego, jednak odróżnienie takiego zdania od zdań trywialnych jest możliwe poprzez rozwinięcie ich do pełnej postaci twierdzenia. Rozważmy dla przykładu następujące twierdzenie sformułowane w postaci jednego zdania: "jeżeli liczba naturalna m jest podzielna przez sześć, to jest ona podzielna przez trzy". To samo twierdzenie z rozbiciem na założenia i tezę wyglądałoby następująco:

    Pojęcie pierwotne – obiekt w teorii sformalizowanej, o którym mówi ona w swych aksjomatach, konstruując wypowiedzi (twierdzenia) zgodnie z przyjętymi w tej teorii regułami wnioskowania. Pojęcia pierwotnego nie definiuje się językiem teorii, tylko podaje się definicję znaczeniową; przez podanie informacji (lub wymagań) o relacjach, w których występuje.Sylogizm (z stgr. συλλογισμός – konkluzja, wniosek) jest to wnioskowanie o dwóch przesłankach, przy czym obie przesłanki zawierają wspólny element, a każdy element wniosku zawarty jest w dokładnie jednej przesłance.
  • założenie - dla każdego m należącego do zbioru liczb naturalnych i podzielnego przez sześć,
  • teza - m jest podzielne przez trzy.
  • W założeniach twierdzenia bardzo często występują kwantyfikatory, czyli określenia postaci "dla każdego z danych elementów zbioru ..." lub "istnieje taki element zbioru, że ...", jednak znane są także twierdzenia, które da się sformułować bez kwantyfikatorów, stąd występowanie ich nie jest koniecznym warunkiem przyjęcia danej wypowiedzi za twierdzenie.

    Sąd w sensie logicznym – znaczenie zdania w sensie logicznym. Ten sam sąd odpowiada różnym zdaniom mającym to samo znaczenie logiczne (np. zdaniom wypowiedzianym w różnych językach). Od sądów w sensie logicznym odróżnia się sądy w sensie psychologicznym, stanowiące przeżycia odpowiadające sądom w sensie logicznym. Sądy w sensie logicznym można też określić odmiennie - nie jako znaczenia zdań wyrażające pewne przeżycia, ale jako to, co wspólne pewnym klasom sądów w sensie psychologicznym.Dowód – w matematyce wykazanie, że pewne zdanie jest prawdziwe. Dowód należy odróżnić od empirycznego lub heurystycznego rozumowania. Każdy krok dowodu musi jasno wynikać z poprzednich lub być przyjętym aksjomatem; rozumowanie nie spełniające tego warunku nie jest dowodem. Ostatni krok dowodu to udowodnione zdanie, które w ten sposób staje się twierdzeniem danej teorii. Zwyczajowo koniec dowodu oznacza się skrótem q.e.d. (quod erat demonstrandum), c.n.d. (co należało dowieść) lub podobnym.

    Zobacz też[]

  • automatyczne dowodzenie twierdzeń
  • twierdzenie odwrotne do danego twierdzenia
  • twierdzenie przeciwne do danego twierdzenia
  • twierdzenie przeciwstawne do danego twierdzenia
  • Linki zewnętrzne[]

  • "Jakie twierdzenia matematyczne są ważne?" (Delta, 1/1983)
  • "Nierozwiązane problemy i zagadnienia matematyczne" - Obszerny artykuł o twierdzeniach matematycznych

  • Kontrola autorytatywna – w terminologii bibliotekoznawczej określenie procedur zapewniających utrzymanie w sposób konsekwentny haseł (nazw, ujednoliconych tytułów, tytułów serii i haseł przedmiotowych) w katalogach bibliotecznych przez zastosowanie wykazu autorytatywnego zwanego kartoteką wzorcową.Relacja – w teorii mnogości dowolny podzbiór iloczynu kartezjańskiego skończonej liczby zbiorów; definicja ta oddaje intuicję pewnego związku, czy zależności między elementami wspomnianych zbiorów (elementy wspomnianych zbiorów pozostają w związku albo łączy je pewna zależność, czy też własność lub nie). Najważniejszymi relacjami są relacje dwuargumentowe, tj. między elementami pary zbiorów (opisane w osobnym artykule, w tym funkcje i działania jednoargumentowe); relacje jednoargumentowe to po prostu podzbiory pewnego zbioru.



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Automatyczne dowodzenie twierdzeń (ang. automated theorem proving) – proces, w którym komputer rozstrzyga czy dane twierdzenie jest dowodliwe w jakiejś teorii, często przy okazji generując jego dowód. Twierdzenia te należą zwykle do rachunku zdań lub rachunku predykatów pierwszego rzędu.

    Reklama