• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Trysekcja kąta

    Przeczytaj także...
    Wielomian – wyrażenie algebraiczne złożone ze zmiennych i stałych połączonych działaniami dodawania, odejmowania, mnożenia i podnoszenia do potęgi o stałym wykładniku naturalnym.Jerzy Browkin (ur. 5 listopada 1934, zm. 23 listopada 2015 w Warszawie) – polski matematyk zajmujący się algebraiczną teorią liczb. W 1994, wspólnie z Juliuszem Brzezińskim, sformułował n-hipotezę, tj. uogólnienie hipotezy abc na liczby całkowite n ≥ 3.
    Kwadratura koła – problem polegający na skonstruowaniu kwadratu, którego pole równe jest polu danego koła przy użyciu wyłącznie cyrkla i linijki bez podziałki. Jest to jeden z trzech wielkich problemów starożytnej matematyki greckiej (obok trysekcji kąta i podwojenia sześcianu), sformułowany przez szkołę pitagorejską.

    Trysekcja kąta – jeden z trzech (obok podwojenia sześcianu i kwadratury koła) wielkich problemów matematyki greckiej. Polega on na podziale kąta na trzy równe części jedynie przy użyciu cyrkla i liniału. W roku 1837 Pierre Wantzel udowodnił, że konstrukcja taka w ogólnym przypadku jest niewykonalna. Posługując się narzędziami teorii Galois można wykazać, że dla danego kąta kąt o mierze jest konstruowalny wtedy i tylko wtedy, gdy wielomian

    Podwojenie sześcianu (inaczej nazywany problemem delijskim) – jedno z trzech, obok trysekcji kąta i kwadratury koła, wielkich problemów starożytnej matematyki greckiej, polegające na zbudowaniu sześcianu o objętości dwa razy większej niż dany.Konstrukcje klasyczne, konstrukcje przy użyciu cyrkla i linijki – wspólna nazwa problemów polegających na wyznaczeniu odcinków lub kątów spełniających dane warunki jedynie przy pomocy cyrkla i linijki bez podziałki.

    jest rozkładalny w ciele .

    Pierre Laurent Wantzel (ur. 5 czerwca 1814 r. w Paryżu, zm. 21 maja 1848 r. w Paryżu) – matematyk francuski, autor twierdzenia o konstruowalności figur płaskich za pomocą cyrkla i linijki.

    Konstrukcja Archimedesa[]

    Trysekcja.svg

    Rezygnując z wymogu użycia tylko cyrkla i liniału można dokonać trysekcji kąta ostrego wykorzystując konstrukcję Archimedesa. Używa się do niej cyrkla i liniału z zaznaczonymi dwoma punktami X i Y. Najpierw należy nakreślić okrąg o środku O (gdzie O – wierzchołek kąta) i promieniu . Punkty przecięcia okręgu z ramionami kąta oznaczyć jako A i B. Następnie poprowadzić prostą OA oraz prostą za pomocą linijki tak, aby jeden z zaznaczonych na niej punktów X należał do prostej OA, zaś drugi – punkt Y do okręgu i tak by prosta przechodziła przez punkt B. Wówczas proste OA i przetną się pod kątem .

    Bibliografia[]

  • Jerzy Browkin: Teoria ciał. PWN, 1978.
  • Agnieszka Nawrot Sabak: Encyklopedia Matematyka. Kraków: GREG, 2008, s. 245. ISBN 978-83-7517-015-3.
  • Linki zewnętrzne[]

  • (ang.) John J O'Connor; Edmund F. Robertson Trysekcja kąta w MacTutor History of Mathematics archive



  • w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Reklama

    Czas generowania strony: 0.026 sek.