• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Teoria sterowania



    Podstrony: [1] [2] 3 [4] [5]
    Przeczytaj także...
    Estymacja to dział wnioskowania statystycznego będący zbiorem metod pozwalających na uogólnianie wyników badania próby losowej na nieznaną postać i parametry rozkładu zmiennej losowej całej populacji oraz szacowanie błędów wynikających z tego uogólnienia. Wyrażenie nieznana postać jest kluczem do odróżnienia estymacji od drugiego działu wnioskowania statystycznego, jakim jest weryfikacja hipotez statystycznych, w którym najpierw stawiamy przypuszczenia na temat rozkładu, a następnie sprawdzamy ich poprawność.Sterowanie ślizgowe (sterowanie z ruchem ślizgowym, sterowanie z reżimem ślizgowym, ang. sliding mode control lub SMC) – metoda sterowania układami nieliniowymi, która zmienia dynamikę układu nieliniowego poprzez zastosowanie nieciągłego sygnału sterującego, co wymusza „ślizganie się” układu wzdłuż, na wskroś normalnego zachowania systemu.
    Zagadnienia teoretyczne stosowane współcześnie w przemyśle[ | edytuj kod]

    Koncepcje teorii sterowania, które znajdują współcześnie zastosowanie w przemyśle można ująć w trzy grupy:

    a) grupa zagadnień związanych z zaawansowanymi metodami sterowania PID: I-PD i dwa stopnie swobody PID, odsprzęganie PID, kompensacja czasu martwego, harmonogramowanie wzmocnienia, automatyczne dostrajanie regulacji PID;

    b) grupa metodyk wywodząca się z nowoczesnej teorii sterowania: regulacja LQG, obserwatory, filtr Kalmana, sterowanie predykcyjne (MPC), sterowanie adaptacyjne, sterowanie i analiza z normą H-nieskończoność, sterowanie powtarzalne, sterowanie ślizgowe, dokładna linearyzacja i sterowanie, sterowanie z optymalizacją;

    Regulator PID (regulator proporcjonalno-całkująco-różniczkujący, ang. proportional-integral-derivative controller) – regulator stosowany w układach regulacji składający się z trzech członów: proporcjonalnego, całkującego i różniczkującego. Najczęściej jego celem jest utrzymanie wartości wyjściowej na określonym poziomie, zwanym wartością zadaną.Teoria układów dynamicznych - dziedzina matematyki zajmująca się układami dynamicznymi. Stanowi ona ważny w praktyce dział matematyki, przy jej pomocy opisuje się wiele procesów, na przykład dynamikę populacji biologicznych.

    c) grupa metodyk zaliczanych do metod sztucznej inteligencji w tym: sterowanie rozmyte, sterowanie oparte na regułach (systemy ekspertowe), sterowanie wykorzystujące sieci neuronowe.

    Porównanie klasycznej i nowoczesnej teorii sterowania[ | edytuj kod]

     Osobny artykuł: Historia automatyki.


    W latach 40. XX wieku, metody częstotliwościowe pozwalały inżynierom na projektowanie liniowych systemów ze sprzężeniem zwrotnym, które spełniały wymagania odnośnie do ich działania. Od końca lat 40. do początków lat 50. XX wieku, w pełni rozwinięto metody związane z położeniem pierwiastków na płaszczyźnie. Metody częstotliwościowe i związane z położeniem pierwiastków stanowią rdzeń klasycznej teorii sterowania. Dzięki nim otrzymywało się układy, które są stabilne i spełniają zbiór mniej lub bardziej arbitralnych wymagań odnośnie do ich działania. Takie systemy nie są, w ogólności, optymalne w żadnym znaczącym sensie. Od lat 50. XX wieku nacisk w problemach związanych z układami sterowania przesunął się z projektów dających w efekcie jeden z kilku możliwych układów (które działają jak należy) do projektów dających tylko jeden układ optymalny w pewnym znaczącym sensie.

    Proces stochastyczny - rodzina zmiennych losowych określonych na pewnej przestrzeni probabilistycznej o wartościach w pewnej przestrzeni mierzalnej. Najprostszym przykładem procesu stochastycznego jest wielokrotny rzut monetą: dziedziną funkcji jest zbiór liczb naturalnych (liczba rzutów), natomiast wartością funkcji dla danej liczby jest jeden z dwóch możliwych stanów losowania (zdarzenie), orzeł lub reszka. Nie należy mylić procesu losowego, którego wartości są zdarzeniami losowymi, z funkcją, która zdarzeniom przypisuje wartość prawdopodobieństwa ich wystąpienia (mamy wówczas do czynienia z rozkładem gęstości prawdopodobieństwa).Pneumatyka – nauka, będąca działem inżynierii mechanicznej, zajmująca się konstruowaniem i praktycznym wykorzystaniem urządzeń, w których przekazywanie energii i sterowanie realizowane jest za pomocą sprężonego powietrza (bądź innego gazu o podobnych właściwościach) jako czynnika roboczego.

    Jako że nowoczesne obiekty sterowania z wieloma wejściami i wyjściami stawały się coraz bardziej złożone, opis takich wymagał coraz większej liczby równań. Klasyczna teoria sterowania, która stosuje tylko modele z jednym wejściem i wyjściem, stała się całkowicie bezsilna przy podejściu do układów o wielu wejściach i wyjściach. Od lat 60. XX wieku rozwinęła się nowoczesna teoria sterowania, która pozwalała na poradzenie sobie z wzmagającą się złożonością nowoczesnych obiektów i wyśrubowanych wymagań co do dokładności, wagi czy kosztów zarówno w zastosowaniach wojskowych, kosmicznych czy przemysłowych.

    Synteza - w teoria sterowania zadanie syntezy polega na określeniu struktury i parametrów regulatora dla danego układu regulacji (przy określonych warunkach jakie powinien spełniać taki układ).Hydraulika - nauka o praktycznych zastosowaniach cieczy a w szczególności wykorzystywaniu ich ruchu (przepływu). Jest powiązana z mechaniką płynów, która stanowi jej teoretyczną podbudowę.

    Mimo całej swojej mocy i zalet, nowoczesna teoria sterowania wykazywała jednak pewne braki. Gwarancja odpowiedniego działania, otrzymywana przy rozwiązaniu równań macierzowych, oznaczała, że często można było zaprojektować system sterowania, który działa w teorii. Jednocześnie projektant pozbawiony był jednak intuicyjnego wglądu w problem sterowania, z jakim pracował. Z drugiej strony metody częstotliwościowe klasycznej teorii sterowania ujawniały więcej, bardziej odwoływały się do inżynierskiego wyczucia. Kolejny problemem jaki towarzyszył nowoczesnemu projektowaniu układów regulacji polegał na braku jakiejkolwiek kompensacji dynamiki. Narażało to nowocześnie zaprojektowany system na brak odporności w przypadku działania zakłóceń, pojawienia się dynamiki nieuwzględnionej w modelu czy wystąpienia szumu pomiarowego. Z drugiej strony odporność taka wbudowana została niejako w metody częstotliwościowe, które posługują się takimi pojęciami jak zapas amplitudy i zapas fazy.

    Elektrotechnika (inżynieria elektryczna) - dziedzina techniki i nauki, która zajmuje się zagadnieniami związanymi z wytwarzaniem, przetwarzaniem (przekształcaniem), przesyłaniem, rozdziałem, magazynowaniem i użytkowaniem energii elektrycznej.Algorytm genetyczny - rodzaj algorytmu przeszukującego przestrzeń alternatywnych rozwiązań problemu w celu wyszukania rozwiązań najlepszych.

    Z uwagi na powyższe w latach 70. XX wieku, szczególnie w Wielkiej Brytanii, Howard H. Rosenbrock (1974) oraz A.G.J. MacFarlane i Ian Postlethwaite (1977) wykonali wiele działań mających na celu rozszerzenie klasycznych metod dziedziny częstotliwości i metod analizy położenia pierwiastków na układy wielowymiarowe. Z powodzeniem wprowadzono takie pojęcia takie jak miejsce charakterystyczne, dominacja diagonalna i odwrotna macierz Nyquista.

    Ciepło w fizyce – jeden z dwóch, obok pracy, sposobów przekazywania energii wewnętrznej układowi termodynamicznemu. Jest to przekazywanie energii chaotycznego ruchu cząstek (atomów, cząsteczek, jonów).Filtr Kalmana - algorytm rekurencyjnego wyznaczania minimalno-wariancyjnej estymaty wektora stanu modelu liniowego dyskretnego układu dynamicznego na podstawie pomiarów wyjścia oraz wejścia tego układu. Przyjmuje się założenie, że zarówno pomiar, jak i proces przetwarzania wewnątrz układu jest obarczony błędem o rozkładzie gaussowskim.

    Głównym proponentem wykorzystywania metod klasycznych w kontekście systemów wielowymiarowych był Isaac M. Horowitz, którego ilościowa teoria sprzężenia zwrotnego rozwinięta na początku lat 70. pozwalana na projektowanie układów odpornych z użyciem wykresów Nicholsa. W 1981 roku ukazały się wpływowe artykuły, których autorami byli J. Doyle, G. Stein (1981) oraz M.G. Safonov, A.J. Laub i G.L. Hartmann (1981). Stanowią one rozszerzenie ważnej pracy MacFarlane’a i Postlethwaite’a z 1977 roku, ukazują istotność wykresów wartości osobliwych względem częstotliwości przy projektowaniu odpornych układów wielowymiarowych. Przy użyciu tych wykresów wiele klasycznych metod dziedziny częstotliwości można wykorzystać przy projektowaniu za pomocą metod nowoczesnej teorii sterowania. Podejście takie badane było w kontekście sterowania samolotami i procesami przemysłowymi przez M. Athansa i innych teoretyków. W wyniku fuzji powstała nowa teoria sterowania, która łączy zalety metod klasycznych i z najlepszymi własnościami metod nowoczesnych (przegląd takich nowoczesnych metod projektowania układów odpornych w 1987 roku przedstawił P. Dorato).

    Analiza zespolona – dziedzina matematyki, w szczególności analizy matematycznej, obejmująca swą tematyką teorię funkcji zespolonych zmiennej rzeczywistej i zespolonej, jednej i wielu zmiennych – w tym bardzo rozbudowane teorie funkcji analitycznych, funkcji eliptycznych czy odwzorowań konforemnych. Ma zastosowania w teorii liczb, teorii fraktali, matematyce stosowanej, teorii przestrzeni Hilberta a także w pewnych dziedzinach fizyki.Regulator − jeden z elementów składających się na obwód regulacji. Zadanie regulatora polega na wygenerowaniu odpowiedniego sygnału sterującego, tak aby obiekt sterowany zachowywał się w pożądany sposób (na przykład w jak najkrótszym czasie osiągał wartość zadaną).

    W latach 50 i 60. XX wieku powstały fundamentalne prace z zakresu teorii sterowania optymalnego. W latach 70. i 80. XX natomiast nastąpił dalszy rozwój teorii w zakresie sterowania stochastycznego, odpornego i adaptacyjnego.

    Podstrony: [1] [2] 3 [4] [5]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Teoria systemów bazuje na pojęciu system, pierwotnie była teorią biologiczną, następnie została rozwinięta i poszerzona przez cybernetyków i inżynierów (inżynieria systemowa), są w niej też nurty nauk społecznych jak socjologia i ekonomia. Ostatnio staje się też punktem odniesienia w kognitywistyce i informatyce i dąży do coraz to szerszych uogólnień jako "systemika" (ang. systemics) lub "ogólna teoria systemów".
    Analiza - w teoria sterowania zadanie analizy polega na określeniu dla danego układu regulacji jak przechodzą przez niego różne sygnały. Ponadto pożądane może być określenie struktury i parametrów takiego układu.
    Sprzężenie zwrotne (ang. feedback) – oddziaływanie sygnałów stanu końcowego (wyjściowego) procesu (systemu, układu), na jego sygnały referencyjne (wejściowe). Polega na otrzymywaniu przez układ informacji o własnym działaniu (o wartości wyjściowej). Ponieważ matematycznym, jednoznacznym opisem bloku gałęzi zwrotnej jest transmitancja to informacja ta może być modyfikowana przez transmitancję bloku gałęzi zwrotnej.
    Badania operacyjne - dyscyplina naukowa związana z teorią decyzji pozwalająca wyznaczyć metodę i rozwiązanie określonych problemów związanych z podjęciem optymalnych decyzji. Badania operacyjne to zbiór metod matematycznych i statystycznych, obejmujących m. in.:
    Teoria prawdopodobieństwa (także rachunek prawdopodobieństwa lub probabilistyka) – dział matematyki zajmujący się zdarzeniami losowymi. Rachunek prawdopodobieństwa zajmuje się badaniem abstrakcyjnych pojęć matematycznych stworzonych do opisu zjawisk, które nie są deterministyczne: zmiennych losowych w przypadku pojedynczych zdarzeń oraz procesów stochastycznych w przypadku zdarzeń powtarzających się (w czasie). Jako matematyczny fundament statystyki, teoria prawdopodobieństwa odgrywa istotną rolę w sytuacjach, w których konieczna jest analiza dużych zbiorów danych. Jednym z największych osiągnięć fizyki dwudziestego wieku było odkrycie probabilistycznej natury zjawisk fizycznych w skali mikroskopijnej, co zaowocowało powstaniem mechaniki kwantowej.
    Modelowanie matematyczne to użycie języka matematyki do opisania zachowania jakiegoś układu (na przykład układu automatyki, biologicznego, ekonomicznego, elektrycznego, mechanicznego, termodynamicznego).
    Kompensacja czasu martwego (ang. dead time compensation) - w teorii sterowania metoda kompensacji (korekcji) stosowana w sterowaniu obiektów z czasem martwym (czyli takich, w których zmiana pojawia dopiero po dłuższym czasie od momentu zmiany sygnału podanego na wejściu obiektu). Przykładem może tu być zmiana przepływu w długim rurociągu.

    Reklama

    Czas generowania strony: 0.024 sek.