• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Teoria pola z cechowaniem



    Podstrony: 1 [2] [3]
    Przeczytaj także...
    Teorie pól kwantowych (ang. QFT – Quantum Field Theory) – współczesne teorie fizyczne tłumaczące oddziaływania podstawowe. Są one rozwinięciem mechaniki kwantowej zapewniającym jej zgodność ze szczególną teorią względności.Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.

    Cechowanie – to matematyczna procedura, występująca w kwantowej teorii pola, nakładająca na fermionowe pola kwantowe wymagania dodatkowej symetrii, zwanej symetrią lokalną.

    W kwantowej teorii pola wychodzi się od definicji lagranżjanów pól kwantowych, które są relatywistycznie niezmiennicze, czyli nie zmieniają się mimo dokonania transformacji układu współrzędnych czasoprzestrzeni (por. grupa Lorentza). Transformacje takie nazywa się globalnymi symetriami, gdyż są zdefiniowane za pomocą tych samych parametrów w całej czasoprzestrzeni.

    Foton (gr. φως – światło, w dopełniaczu – φοτος, nazwa stworzona przez Gilberta N. Lewisa) jest cząstką elementarną, nie posiadającą ładunku elektrycznego ani momentu magnetycznego, o masie spoczynkowej równej zero (m0 = 0), liczbie spinowej s = 1 (fotony są zatem bozonami). Fotony są nośnikami oddziaływań elektromagnetycznych, a ponieważ wykazują dualizm korpuskularno-falowy, są równocześnie falą elektromagnetyczną.W fizyce cząstek bozony (ang. boson od nazwiska fizyka Satyendra Bose), są cząstkami posiadającymi spin całkowity. Większość bozonów to cząstki złożone, jednakże 12 z nich (tak zwane bozony cechowania) są cząstkami elementarnymi, niezłożonymi z mniejszych cząstek (cząstki fundamentalne).

    Lokalne symetrie, stanowiące podstawę teorii z cechowaniem, nakładają mocniejsze wymagania: parametry opisujące grupy nowych transformacji są lokalne, tj. są funkcjami punktów czasoprzestrzeni, a więc w danym punkcie są niezależne od innych punktów czasoprzestrzeni. Transformacje takie nazywa się lokalnymi.

    Grupą cechowania (lub grupą symetrii lokalnych) nazywa się grupę transformacji lokalnych lagranżjanu danego pola kwantowego. Lokalne transformacje danego pola kwantowego tworzącą przy tym grupę Liego. Z każdą grupą Liego związana jest algebra Liego, której elementy pełnią rolę generatorów transformacji grupy Liego. Każdemu generatorowi grupy Liego odpowiada pewne pole (zwykle jest to pole wektorowe) nazywane polem cechowania. Kwanty pól cechowania nazywa się bozonami cechowania.

    Pochodna cząstkowa – w matematyce dla danej funkcji wielu zmiennych pochodna względem jednej z jej zmiennych przy ustaleniu pozostałych (w przeciwieństwie do pochodnej zupełnej, w której zmieniać się mogą wszystkie zmienne). Pochodne cząstkowe znajdują zastosowanie w rachunku wektorowym oraz geometrii różniczkowej.Superpozycja – własność rozwiązań równania różniczkowego przejawiająca się w tym, że suma dwóch rozwiązań także jest rozwiązaniem równania. W podstawowym sensie własność ta może zostać wyrażona w inny sposób przez twierdzenie, że przestrzeń rozwiązań równania jest przestrzenią liniową. Tak wyrażone twierdzenie pozostaje prawdziwe, jeśli równanie różniczkowe jest liniowe.

    Niezmiennością cechowania nazywa się niezmienniczość lagranżjanu poddanego działaniu lokalnych grup transformacji.

    Procedura cechowania przebiega następująco:

  • do lagranżjanu swobodnego pola kwantowego dodaje się dodatkowe wyrazy, tak że całość wykazuje odpowiednią symetrię lokalną.
  • dodatkowe wyrazy przedstawiają lagranżjany dodatkowych pól kwantowych – pól bozonowych, które oddziałują z danym polem kwantowym i przenoszą oddziaływania między polami fermionowymi.
  • Np. symetria cechowania nałożona na swobodne pole cząstek Diraca (tj. opisanych równanie Diraca, np. elektron, pozyton) przedstawia skwantowane pole elektromagnetyczne, pośredniczące w oddziaływań między elektronami. Wymóg lokalnych symetrii lagranżjanu pól kwarkowych pozwolił odkryć gluony, jako pola cechowania oddziaływań silnych, występujących między kwarkami.

    Pochodna kowariantna – tensor powstały w wyniku różniczkowania pewnego tensora wyrażonego we współrzędnych krzywoliniowych przestrzeni euklidesowej i nieeuklidesowej dowolnego wymiaru (w ogólności w rozmaitości pseudoriemannowskiej), z określonym tensorem metrycznym. We współrzędnych kartezjańskich sprowadza się do zwykłej pochodnej cząstkowej. Gradient – w analizie matematycznej, a dokładniej rachunku wektorowym, pole wektorowe wskazujące kierunki najszybszych wzrostów wartości danego pola skalarnego w poszczególnych punktach, przy czym moduł (długość) każdej wartości wektorowej jest równy szybkości wzrostu. Wektor przeciwny do gradientu nazywa się często antygradientem.

    Jeżeli grupa symetrii jest nieprzemienna, to teorię cechowania nazywa się nieabelową teorią cechowania. Przykładem jest teoria Yanga-Millsa.

    Definicje[ | edytuj kod]

    Symetria cechowania[ | edytuj kod]

    Symetria cechowania to matematyczna własność różnych teorii fizycznych, polegająca na tym, że pewne mierzalne parametry teorii (np. energia, ładunek, pole elektryczne) pozostają niezmienione po poddaniu układu fizycznego pewnej matematycznej transformacji, która nie jest przesunięciem, obrotem, transformacją Lorentza ani transformacją supersymetrii.

    W matematyce, grupa Liego to grupa, która jest zarazem gładką rozmaitością. Można na nią patrzeć jako na zbiór z dodatkowymi strukturami rozmaitości i grupy. Przykładem grupy Liego jest grupa obrotów przestrzeni trójwymiarowej. Grupy Liego są często spotykane w analizie matematycznej, fizyce i geometrii. Zostały po raz pierwszy wprowadzone przez Sophusa Liego w 1870 roku do badania równań różniczkowych.Kwantowanie, kwantyzacja — konstrukcja pozwalająca na przejście z klasycznej teorii pola do kwantowej teorii pola. Kwantowanie jest uogólnieniem konstrukcji stosowanej przy przejściu z mechaniki klasycznej do mechaniki kwantowej.

    Symetria cechowania oznacza, że w danej teorii równania przypisane prawom przyrody mają więcej „matematycznych stopni swobody” niż fizycznych, tzn. danej sytuacji fizycznej odpowiada więcej niż jedno rozwiązanie równań teorii.

    Powstaje pytanie, czy symetria cechowania jest jedynie matematycznym artefaktem teorii, czy też różnym rozwiązaniom odpowiadają różne sytuacje fizyczne, być może zależne od nie poznanych dotąd własności przyrody. Przykładowo teoria Kaluzy-Kleina tłumaczy istnienie symetrii cechowania jako wynik występowania dodatkowych wymiarów czasoprzestrzeni, których nie uwzględnia teoria. Np. elektrodynamika klasyczna oparta jest o założenie, iż przestrzeń fizyczna jest 3-wymiarowa; pojawianie się w tej teorii cechowania potencjału pola elektromagnetycznego wynika być może stąd, że de facto przestrzeń fizyczna ma więcej wymiarów. Szczególnym objawem symetrii cechowania jest np. swoboda wyboru punktu, w którym potencjał jest zerowy (co wynika stąd, iż znane prawa oddziaływań elektromagnetycznych zawierają zależności sił oddziaływań od różnic potencjałów elektrycznych, a nie od samego potencjału).

    Kwark – cząstka elementarna, fermion mający ładunek koloru (czyli podlegający oddziaływaniom silnym). Według obecnej wiedzy cząstki elementarne będące składnikami materii można podzielić na dwie grupy. Pierwszą grupę stanowią kwarki, drugą grupą są leptony. Każda z tych grup zawiera po sześć cząstek oraz ich antycząstki, istnieje więc sześć rodzajów kwarków oraz sześć rodzajów antykwarków.Pole elektromagnetyczne – pole fizyczne, stan przestrzeni, w której na obiekt fizyczny mający ładunek elektryczny działają siły o naturze elektromagnetycznej. Pole elektromagnetyczne jest układem dwóch pól: pola elektrycznego i pola magnetycznego. Pola te są wzajemnie związane, a postrzeganie ich zależy też od obserwatora, wzajemną relację pól opisują równania Maxwella. Własności pola elektromagnetycznego, jego oddziaływanie z materią bada dział fizyki zwany elektrodynamiką. W mechanice kwantowej pole elektromagnetyczne jest postrzegane jako wirtualne fotony.

    Transformacja cechowania[ | edytuj kod]

    Transformacja cechowania, przekształcenie cechowania – przekształcenie matematyczne na obiektach teorii, które nie zmienia żadnych mierzalnych wielkości fizycznych.

    Np. w elektrodynamice do pola elektromagnetycznego można dodać gradient dowolnej różniczkowalnej funkcji skalarnej i żadna z następujących wielkości fizycznych się nie zmieni: energia, natężenie pola elektrycznego, natężenie pola magnetycznego.

    Grupa cechowania[ | edytuj kod]

    Grupa cechowania to grupa symetrii transformacji cechowania, czyli taki zbiór transformacji cechowania (wraz z regułą ich składania), która pozostawia mierzalne parametry układu bez zmian.

    Linia geodezyjna, czasem nazywana krótko: geodezyjna – krzywa w przestrzeni metrycznej (ściślej: w G-przestrzeni), zawierająca najkrótszą drogę pomiędzy dowolnymi dostatecznie bliskimi swoimi punktami, nie dająca się już wydłużyć z żadnej strony. Formalnie definiuje się je jako krzywe o zerowej krzywiznie geodezyjnej. Dla przestrzeni euklidesowej geodezyjne są zwykłymi prostymi.Twierdzenie Noether – twierdzenie udowodnione przez Emmy Noether, mające fundamentalne znaczenie w fizyce. Dotyczy związku zasad zachowania z odpowiednimi symetriami ciągłymi.

    Z punktu widzenia fizyki teoretycznej ważnym pytaniem jest, czy dana grupa cechowania jest przemienna czy nieprzemienna.

    Grupą cechowania elektrodynamiki jest grupa U(1). Teoria oddziaływań elektrosłabych ma grupę U(1)×SU(2). Chromodynamika kwantowa ma grupę SU(3). Model Standardowy ma grupę U(1)×SU(2)×SU(3). Teorie wielkiej unifikacji mają większe grupy, przykładowo SU(5), SO(10), E6, E8.

    Hiperładunek – hipotetyczna wielkość fizyczna przypisywana cząstkom elementarnym. Jest oznaczana literą Y i zdefiniowana następująco:Kolor lub ładunek kolorowy – liczba kwantowa wprowadzona, by rozróżnić kwarki znajdujące się w tym samym stanie spinowym.


    Podstrony: 1 [2] [3]




    Warto wiedzieć że... beta

    Lagranżjan (L, inaczej funkcja Lagrange’a) – gęstość funkcjonału działania S charakteryzującego właściwości mechaniczne układu fizycznego.
    Ładunek elektryczny ciała (lub układu ciał) – fundamentalna właściwość materii przejawiająca się w oddziaływaniu elektromagnetycznym ciał obdarzonych tym ładunkiem. Ciała obdarzone ładunkiem mają zdolność wytwarzania pola elektromagnetycznego oraz oddziaływania z tym polem. Oddziaływanie ładunku z polem elektromagnetycznym jest określone przez siłę Lorentza i jest jednym z oddziaływań podstawowych.
    Oddziaływania podstawowe (fundamentalne) – oddziaływania fizyczne obserwowane w przyrodzie, nie dające się sprowadzić do innych oddziaływań.
    Grupa Lorentza – grupa transformacji układu współrzędnych 4-wymiarowej czasoprzestrzeni Minkowskiego, takich że interwały czasoprzestrzenne nie ulegają zmianie, przy czym początek układu współrzędnych pozostaje bez zmian.
    Kwant – najmniejsza porcja, jaką może mieć lub o jaką może zmienić się dana wielkość fizyczna w pojedynczym zdarzeniu; np. kwant energii, kwant momentu pędu, kwant strumienia magnetycznego, kwant czasu.
    Symetria – rodzaj symetrii, której podlegają przestrzeń, pola kwantowe, równania pola, lagranżjany, hamiltoniany itp. Symetrie są obecnie podstawowym narzędziem fizyki: z ich istnienia można wywnioskować zasady zachowania (twierdzenie Noether) oraz wszystkie własności cząstek elementarnych, takie jak ładunki, masy i oddziaływania, w których uczestniczą. Jeżeli jakiejś własności nie można wyprowadzić z zasad symetrii, tylko trzeba ją postulować arbitralnie, to teorię taką uznajemy za niekompletną.
    Teoria Kaluzy-Kleina – teoria w fizyce łącząca teorię względności Einsteina z elektromagnetyzmem Maxwella za pomocą rozszerzenia czterowymiarowej czasoprzestrzeni Minkowskiego o hipotetyczny dodatkowy piąty wymiar.

    Reklama

    Czas generowania strony: 0.018 sek.