• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Teoria modeli



    Podstrony: [1] 2 [3]
    Przeczytaj także...
    Robert Lawson Vaught (ur. 4 kwietnia 1926 w Alhambra – zm. 2 kwietnia 2002). Amerykański logik i matematyk. Jeden z twórców teorii modeli. Udowodnił równoważność twierdzenia Löwenheima-Skolema z aksjomatem wyboru.Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.
    Początki teorii modeli[]

    Początki teorii modeli sięgają lat trzydziestych XX wieku (chociaż pewne rozważania o teoriomodelowym charakterze były przeprowadzane znacznie wcześniej), kiedy osiągnięto wiele ważnych wyników, które stworzyły fundament dla dalszego bujnego rozwoju tej dziedziny. Największe osiągnięcia tego okresu wiąże się zazwyczaj z nazwiskami Gödla i Tarskiego, którzy przez współczesnych są zaliczani do grona najwybitniejszych logików wszech czasów.

    Kurt Gödel (ur. 28 kwietnia 1906 w Brnie, zm. 14 stycznia 1978 w Princeton) – austriacki logik i matematyk, autor twierdzeń z zakresu logiki matematycznej, współautor jednej z aksjomatyk teorii mnogości. Do najbardziej znanych osiągnięć matematycznych Gödla należą twierdzenia o niezupełności i niesprzeczności teorii dedukcyjnych, które obejmują arytmetykę liczb naturalnych.Jerzy Maria Michał Łoś (ur. 22 marca 1920 we Lwowie, zm. 1 czerwca 1998 w Warszawie) – polski logik, matematyk i ekonomista.

    Alfred Tarski, polski logik i matematyk, jest powszechnie uważany za twórcę teorii modeli. W swojej słynnej pracy Pojęcie prawdy w językach nauk dedukcyjnych z 1933 roku rozważał między innymi pojęcie zdania prawdziwego i jego różne możliwe definicje. Wykazał on w szczególności, że można podać definicję prawdy dla dowolnego języka skończonego rzędu, zaś dla języków nieskończonego rzędu już nie. Tarski zdefiniował pojęcie spełniania (funkcji zdaniowej przez ciąg elementów oraz zdania przez model), które jest kluczowe dla całej teorii modeli i w nieznacznie zmienionej formie używane do dzisiaj. Opracował też między innymi pewną metodę badania czy dany model stanowi elementarną podstrukturę innego (test Tarskiego-Vaughta). Badania Tarskiego nad związkami między syntaktyką i semantyką logiczną wpłynęły na ugruntowanie podstaw teorii modeli.

    <|||||||||| |||||||||| |||||||||| |||||||||| |||||||||| |||||||||| |||||||||| |||||||||| |||||||||| |||||||||| - |||||||||| |||||||||| ||||||||||>,Saharon Shelah (hebr. שהרן שלח) (ur. 3 lipca 1945 w Jerozolimie), izraelski matematyk, laureat wielu nagród, w tym Nagrody Wolfa z matematyki w 2001 roku. Profesor matematyki na Uniwersytecie Hebrajskim w Jerozolimie i w Rutgers University (stan New Jersey).

    Austriak Kurt Gödel (sławny dzięki osiągnięciom w dziedzinie logiki, również niezwiązanych z teorią modeli) udowodnił w 1931 roku twierdzenie o istnieniu modelu, które głosi, że każda niesprzeczna teoria pierwszego rzędu ma model. Natychmiastowym wnioskiem z tego twierdzenia jest inne, znane jako twierdzenie o pełności klasycznego rachunku logicznego. Orzeka ono, że teoria T dowodzi zdania X (tzn. istnieje dowód zdania X oparty na zdaniach należących do teorii T oraz aksjomatach i regułach dowodzenia klasycznego rachunku logicznego) wtedy i tylko wtedy, gdy każdy model teorii T spełnia zdanie X.

    Struktura matematyczna (także model, system semantyczny, model semantyczny, dziedzina, struktura pierwszego rzędu) - w matematyce zbiór obiektów matematycznych połączonych w pewien system.Teoria mnogości lub inaczej: teoria zbiorów – dział matematyki, a zarazem logiki matematycznej zapoczątkowany przez niemieckiego matematyka Georga Cantora pod koniec XIX wieku. Teoria początkowo wzbudzała wiele kontrowersji, jednak wraz z postępem matematyki zaczęła ona pełnić rolę fundamentu, na którym opiera się większość matematycznych rozważań.

    Prowadzi to do ważnego wniosku, że pojęcia konsekwencji syntaktycznej i semantycznej są równoważne i można ich używać wymiennie, w zależności od tego, które się łatwiej daje zastosować w danym przypadku. Warto przy tym zwrócić uwagę, że zgodnie z wynikami Tarskiego w teorii muszą istnieć jednocześnie zdania prawdziwe których teoria nie dowodzi i że pojęcie prawdziwości i konsekwencji syntaktycznej (dowodliwości) są różne. Sam Tarski w swojej pracy naukowej konsekwentnie unikał czysto formalnego operowania symbolami i prezentował pogląd, w ramach którego ważne jest znaczenie badanych zdań teorii, a nie jedynie ich syntaktyczne związki z innymi zdaniami. Zatem równoważność konsekwencji syntaktycznej i semantycznej należy rozumieć jako równoważność wewnętrzną teorii, a nie jako orzeczenie o prawdziwości zdania jako cechy wynikającej z jego syntaktycznych związków. Znane są bowiem zdania, o których wiadomo, że są prawdziwymi zdaniami pewnych teorii (i jest na to dowód), nie są one jednak w danej teorii dowiedlne (dowód wymaga środków wykraczających poza daną teorię). Przykładów takich zdań dostarcza np. dowód twierdzenia Gödla. W konsekwencji zdania dowiedlne w danej teorii (czyli we wszystkich jej modelach) stanowią podzbiór właściwy zdań prawdziwych danej teorii. Tym samym twierdzenie o równoważności syntaktyki i semantyki może dotyczyć wyłącznie części wspólnej tych zbiorów, nie zaś pełnego zbioru zdań prawdziwych danej teorii czy zbioru zdań prawdziwych w ogóle.

    Aksjomat wyboru (ozn. AC od ang. Axiom of Choice) – jeden z aksjomatów teorii mnogości mówiący o możliwości skonstruowania zbioru (nazywanego selektorem) zawierającego dokładnie po jednym elemencie z każdego zbioru należącego do rodziny niepustych zbiorów rozłącznych.Moduł – struktura algebraiczna będąca uogólnieniem przestrzeni liniowej. Ponieważ grupy abelowe można postrzegać jako moduły nad pierścieniem liczb całkowitych, to teoria modułów znajduje zastosowanie w wielu działach algebry i innych dziedzinach matematyki.

    Wyodrębnienie jako dział logiki[]

    Ważnym etapem w rozwoju teorii modeli były lata sześćdziesiąte XX wieku, kiedy wyraźnie wyodrębniła się ona jako jeden z kilku działów logiki matematycznej. Matematycy i logicy uzyskali wtedy wiele istotnych rezultatów, znacznie rozbudowując przy okazji aparat pojęciowy teorii modeli i wyznaczając dla tej dziedziny zupełnie nowe kierunki rozwoju. Poniżej wymieniamy tylko niektóre ważniejsze wydarzenia z tego okresu.

    Alfred Tarski wł. Alfred Tajtelbaum (ur. 14 stycznia 1901 w Warszawie, zm. 26 października 1983 w Berkeley, Kalifornia, USA) – polski logik pracujący od 1939 r. w Stanach Zjednoczonych. Twórca m.in. teorii modeli i semantycznej definicji prawdy, uważany jest współcześnie za jednego z najwybitniejszych logików wszech czasów.Hipoteza continuum (skr. CH, od ang. continuum hypothesis) – postawiona przez Georga Cantora hipoteza teorii mnogości dotycząca mocy zbiorów liczb naturalnych i liczb rzeczywistych.
  • W roku 1955 Jerzy Łoś udowodnił fundamentalne twierdzenie o ultraprodukcie, zaś badanie ultraproduktów stało się ważnym fragmentem teorii modeli. Ten sam matematyk sformułował hipotezę dotyczącą kategoryczności teorii zupełnej w mocach nieprzeliczalnych.
  • W roku 1961 Robert Vaught wykazał, że nie istnieje teoria zupełna, która ma dokładnie dwa modele przeliczalne (z dokładnością do izomorfizmu). Następnie wysunął hipotezę bezpośrednio związaną z jego ówczesnymi rozważaniami - nierozstrzygniętą po dziś dzień hipotezę Vaughta. Głosi ona, że jeśli przeliczalna teoria zupełna ma nieprzeliczalnie wiele modeli przeliczalnych, to ma ich continuum. Prace nad hipotezą Vaughta przyniosły tylko częściowe wyniki, ale ogromnie wzbogaciły zasób pojęć teorii modeli.
  • W roku 1963 Paul Cohen podał dowód niezależności pewnych zdań od powszechnie przyjętych aksjomatów teorii mnogości ZF. Niezależne okazały się w szczególności tak znane zdania, jak aksjomat wyboru czy hipoteza continuum. Cohen zastosował nowatorską metodę zwaną forsingiem (czyli wymuszaniem). Metoda ta była później wielokrotnie z powodzeniem używana do wykazywania niezależności różnych zdań od aksjomatów teorii mnogości.
  • Wreszcie w roku 1964 Michael Morley rozstrzygnął pozytywnie wzmiankowaną wcześniej hipotezę Łosia. Udowodnił on bowiem, że jeśli teoria zupełna w języku przeliczalnym jest kategoryczna w pewnej mocy nieprzeliczalnej, to jest kategoryczna we wszystkich mocach nieprzeliczalnych.
  • Ze względu na dokonania Morley'a i zastosowane przez niego nowe metody (między innymi w dowodzie wyżej wspomnianego twierdzenia dotyczącego kategoryczności teorii, które ktoś nazwał pierwszym głębokim twierdzeniem teorii modeli) rok 1964 jest przez niektórych uznawany za symboliczną datę wyodrębnienia się teorii modeli z logiki jako samodzielnej dziedziny.

    Logika matematyczna – dział matematyki, który wyodrębnił się jako samodzielna dziedzina na przełomie XIX i XX wieku, wraz z dążeniem do dogłębnego zbadania podstaw matematyki. Koncentruje się ona na analizowaniu zasad rozumowania oraz pojęć z nim związanych z wykorzystaniem sformalizowanych oraz uściślonych metod i narzędzi matematyki.Aksjomaty Zermelo-Fraenkela, w skrócie: aksjomaty ZF – powszechnie przyjmowany system aksjomatów zaproponowany przez Ernsta Zermelo w 1904 roku, który został później uzupełniony przez Abrahama Fraenkela.


    Podstrony: [1] 2 [3]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Pierścień – struktura formalizująca własności algebraiczne liczb całkowitych oraz arytmetyki modularnej; intuicyjnie zbiór, którego elementy mogą być bez przeszkód dodawane, odejmowane i mnożone, lecz niekoniecznie dzielone. Badanie pierścieni umożliwiło uogólnienie innych pojęć matematycznych takich, jak np. liczby pierwsze (przez ideały pierwsze), wielomiany, ułamki oraz rozwinięcie teorii podzielności i wskazania przy tym najogólniejszej struktury, w której możliwe jest stosowanie algorytmu Euklidesa (tzw. pierścień Euklidesa). Dział matematyki opisujący te struktury nazywa się teorią pierścieni.
    Paul Joseph Cohen (ur. 2 kwietnia 1934 w Long Branch, w stanie New Jersey, w USA; zm. 23 marca 2007, Stanford, Kalifornia) − amerykański matematyk, od 1964 prof. Stanford University.
    Geometria algebraiczna – dziedzina matematyki zajmująca się badaniem specyficznych obiektów geometrycznych, takich jak rozmaitości algebraiczne, metodami algebry. Zajmuje centralne miejsce we współczesnej matematyce; jest spoiwem łączącym tak odległe od siebie dziedziny, jak analizę zespoloną, topologię i teorię liczb. Przenikanie terminologii geometrii algebraicznej i jej definicji do innych gałęzi "królowej nauk" ma odbicie w jednym z najbardziej ambitnych programów unifikacji w matematyce, w programie Langlandsa.
    Algebra – jeden z najstarszych działów matematyki, powstały już w starożytności. Zajmuje się on algebrami ogólnymi i relacjami. Algebra elementarna zajmuje się takimi działaniami jak dodawanie i mnożenie; wprowadza pojęcie zmiennej i wielomianu razem z jego rozkładem na czynniki (faktoryzacją) i znajdowaniem ich pierwiastków, choć algebra jest działem bardziej ogólnym (patrz podział algebry).
    Forsing (ang. forcing) – metoda dowodzenia niesprzeczności i niezależności zdań teorii mnogości względem aksjomatów Zermelo-Fraenkela.
    Rachunek predykatów pierwszego rzędu – (ang. first order predicate calculus) to system logiczny, w którym zmienna, na której oparty jest kwantyfikator, może być elementem pewnej wybranej dziedziny (zbioru), nie może natomiast być zbiorem takich elementów. Tak więc nie mogą występować kwantyfikatory typu "dla każdej funkcji z X na Y ..." (gdyż funkcja jest podzbiorem X × Y), "istnieje własność p, taka że ..." czy "dla każdego podzbioru X zbioru Z ...". Rachunek ten nazywa się też krótko rachunkiem kwantyfikatorów, ale często używa się też nazwy logika pierwszego rzędu (szczególnie wśród matematyków zajmujących się logiką matematyczną).
    W logice matematycznej teorią nazywamy niesprzeczny zbiór zdań. Dokładniej, niech T będzie zbiorem zdań zapisanych w pewnym języku L. Wtedy T jest teorią, jeśli nie istnieje zdanie napisane w języku L takie że T dowodzi zarówno tego zdania, jak i jego zaprzeczenia. Zbiór zdań T dowodzi zdania X, jeśli można przeprowadzić formalny dowód zdania X przy użyciu zdań ze zbioru T oraz aksjomatów i reguł dowodzenia klasycznego rachunku logicznego.

    Reklama

    Czas generowania strony: 0.037 sek.