• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Teoria miary

    Przeczytaj także...
    Przestrzeń euklidesowa – przestrzeń o geometrii euklidesowej. Jest ona naturalnym elementem modeli świata rzeczywistego (łac. geometria = mierzenie ziemi) i stanowi dobre przybliżenie przestrzeni fizycznych w warunkach makroskopowych, jednak nie nadaje się do opisu rzeczywistości w bardzo małych, atomowych, lub bardzo wielkich, astronomicznych, wielkościach. Jednowymiarowa przestrzeń euklidesowa nazywana jest prostą euklidesową, zaś dwuwymiarowa – płaszczyzną euklidesową. Przestrzenie te nazywa się również przestrzeniami afinicznymi euklidesowymi w odróżnieniu od przestrzeni liniowych euklidesowych, znanych szerzej jako przestrzenie unitarne.Algebra Boole’a – algebra ogólna stosowana w matematyce, informatyce teoretycznej oraz elektronice cyfrowej. Jej nazwa pochodzi od nazwiska matematyka, filozofa i logika George’a Boole’a. Teoria algebr Boole’a jest działem matematyki na pograniczu teorii częściowego porządku, algebry, logiki matematycznej i topologii.
    Przestrzeń topologiczna – podstawowe pojęcie topologii; zbiór wyposażony w strukturę (tzw. topologię) wyróżniającą pewną rodzinę jego podzbiorów (tzw. zbiory otwarte), co umożliwia określenie czy dany punkt leży „blisko”, czy „daleko” od danego podzbioru (w jego domknięciu lub poza nim) mimo braku pojęcia odległości (metryki).

    Teoria miary (zwana też teorią miary i całki) - dział analizy matematycznej zajmujący się własnościami ogólnie rozumianych miar zbiorów. Teoria miary bada σ-algebry, funkcje mierzalne oraz całki.

    Za początek tej dziedziny uważa się rok 1902, gdy Henri Lebesgue podał konstrukcję całki opartej na rozszerzeniu dotychczas stosowanego pojęcia miary.

    Najczęściej mierzy się podzbiory przestrzeni euklidesowych. Jednak niektórym „nieporządnym” podzbiorom przestrzeni euklidesowych (czy innych) nie można przypisać "miary" (tj. wielkości liczbowych) w spójny sposób. Klasycznym przykładem jest tzw. zbiór Vitalego. Dlatego przyjęto, iż miara musi być ograniczona do podzbiorów „porządnych”, tj. należących do tzw. przestrzeni mierzalnej określonej na danej przestrzeni. (Jeśli dana przestrzeń jest przestrzenią topologiczną, to zwykle wymaga się, by mierzalne były zbiory otwarte; wówczas do zbiorów mierzalnych należą m.in. zbiory borelowskie.)

    Teoria – z gr. theoría- oglądanie, rozważanie. System pojęć, definicji, aksjomatów i twierdzeń ustalających relacje między tymi pojęciami i aksjomatami, tworzący spójny system pojęciowy opisujący jakąś wybraną fizyczną lub abstrakcyjną dziedzinę.Całka – ogólne określenie wielu różnych, choć powiązanych ze sobą pojęć analizy matematycznej. W artykule rachunek różniczkowy i całkowy podana jest historia ewolucji znaczenia samego słowa całka. Najczęściej przez "całkę" rozumie się całkę oznaczoną lub całkę nieoznaczoną (rozróżnia się je zwykle z kontekstu).

    Rozwój teorii miary pozostaje w ścisłym związku z rozwojem rachunku prawdopodobieństwa: w 1933 r.Kołmogorow sformułował aksjomatyczną definicję prawdopodobieństwa, zastępując klasyczną definicję Laplace'a i definicję częstościową Misesa (zob. prawdopodobieństwo). W interpretacji Kołmogorowa zdarzenia losowe są podzbiorami pewnej przestrzeni probabilistycznej, a prawdopodobieństwo jest miarą określoną na tej przestrzeni (miarą prawdopodobieństwa).

    Intuicyjnie, zdarzenie losowe to pewien zbiór możliwych wyników danego eksperymentu. Może to być zarówno zbiór składający się z pojedynczego wyniku, jak i zbiór złożony z większej ilości elementów. Zdarzenia losowe rozważa się w rachunku prawdopodobieństwa.Teoria prawdopodobieństwa (także rachunek prawdopodobieństwa lub probabilistyka) – dział matematyki zajmujący się zdarzeniami losowymi. Rachunek prawdopodobieństwa zajmuje się badaniem abstrakcyjnych pojęć matematycznych stworzonych do opisu zjawisk, które nie są deterministyczne: zmiennych losowych w przypadku pojedynczych zdarzeń oraz procesów stochastycznych w przypadku zdarzeń powtarzających się (w czasie). Jako matematyczny fundament statystyki, teoria prawdopodobieństwa odgrywa istotną rolę w sytuacjach, w których konieczna jest analiza dużych zbiorów danych. Jednym z największych osiągnięć fizyki dwudziestego wieku było odkrycie probabilistycznej natury zjawisk fizycznych w skali mikroskopijnej, co zaowocowało powstaniem mechaniki kwantowej.

    Zobacz też[]

  • algebra Boole’a



  • w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Przestrzeń probabilistyczna – struktura umożliwiająca modelowanie doświadczenia losowego poprzez wskazanie zdarzeń losowych i przypisanie im prawdopodobieństwa.
    Prawdopodobieństwo – ogólne określenie jednego z wielu pojęć służących modelowaniu doświadczenia losowego poprzez przypisanie poszczególnym zdarzeniom losowym liczb, zwykle z przedziału jednostkowego (w zastosowaniach często wyrażanych procentowo), wskazujących szanse ich zajścia. W rozumieniu potocznym wyraz „prawdopodobieństwo” odnosi się do oczekiwania względem rezultatu zdarzenia, którego wynik nie jest znany (niezależnie od tego, czy jest ono w jakimś sensie zdeterminowane, miało miejsce w przeszłości, czy dopiero się wydarzy); w ogólności należy je rozumieć jako pewną miarę nieprzewidywalności.
    Miara – rozważana w matematyce funkcja służąca określeniu „wielkości” zbiorów poprzez przypisanie im pewnej nieujemnej liczby.
    Henri Léon Lebesgue (ur. 28 czerwca 1875 w Beauvais, zm. 26 lipca 1941 w Paryżu) – francuski matematyk. Twórca nowoczesnego ujęcia teorii miary i całki, zwanej na jego cześć całką Lebesgue’a. Prowadził również badania w teorii szeregów Fouriera i topologii – jedno z podstawowych pojęć teorii wymiaru nosi dziś nazwę wymiaru Lebesgue’a.
    Andriej Nikołajewicz Kołmogorow, ros. Андре́й Никола́евич Колмого́ров (ur. 25 kwietnia 1903, zm. 20 października 1987) – rosyjski matematyk, twórca współczesnej teorii prawdopodobieństwa. Pracował nad rozwojem topologii, logiki i teorii złożoności obliczeniowej, znany jest również z wyników w analizie harmonicznej i mechanice klasycznej - w szczególności w badaniach turbulencji. Laureat wielu nagród, m.in. Nagrody Wolfa w matematyce w 1980.
    Zbiór borelowski – podzbiór przestrzeni topologicznej, który można uzyskać za pomocą przeliczalnych sum i przekrojów zbiorów domkniętych (bądź zwartych) tej przestrzeni. Klasa zbiorów uzyskanych za pomocą tych operacji tworzy σ-ciało nazywane σ-ciałem zbiorów borelowskich lub σ-ciałem borelowskim danej przestrzeni topologicznej. Nazwa została wprowadzona dla uhonorowania prac francuskiego matematyka Émile Borela, który pierwszy badał te zbiory i ich zastosowania.
    Pierre Simon de Laplace (ur. 23 marca 1749 w Beaumont-en-Auge, zm. 5 marca 1827 w Paryżu) – francuski matematyk, astronom, geodeta i fizyk, jeden z twórców teorii prawdopodobieństwa, zwolennik subiektywnej interpretacji prawdopodobieństwa, na podstawie której dokonał m.in. obliczeń masy Saturna, które odbiegają od współcześnie uznanej wartości o mniej niż 1%. W 1772 został profesorem Akademii Wojskowej, następnie w 1785 został członkiem Paryskiej Akademii Nauk. W 1790 został dyrektorem Urzędu Miar i Wag. W 1799 przez krótki czas był Ministrem Spraw Wewnętrznych Francji.

    Reklama

    Czas generowania strony: 0.01 sek.