• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Tensor



    Podstrony: [1] [2] [3] 4 [5] [6] [7] [8] [9] [10] [11]
    Przeczytaj także...
    Przestrzeń euklidesowa – przestrzeń o geometrii euklidesowej. Jest ona naturalnym elementem modeli świata rzeczywistego (łac. geometria = mierzenie ziemi) i stanowi dobre przybliżenie przestrzeni fizycznych w warunkach makroskopowych, jednak nie nadaje się do opisu rzeczywistości w bardzo małych, atomowych, lub bardzo wielkich, astronomicznych, wielkościach. Jednowymiarowa przestrzeń euklidesowa nazywana jest prostą euklidesową, zaś dwuwymiarowa – płaszczyzną euklidesową. Przestrzenie te nazywa się również przestrzeniami afinicznymi euklidesowymi w odróżnieniu od przestrzeni liniowych euklidesowych, znanych szerzej jako przestrzenie unitarne.Szczególna teoria względności (STW) – teoria fizyczna stworzona przez Alberta Einsteina w 1905 roku. Zmieniła ona sposób pojmowania czasu i przestrzeni opisane wcześniej w newtonowskiej mechanice klasycznej. Teoria pozwoliła usunąć trudności interpretacyjne i sprzeczności pojawiające się na styku mechaniki (zwanej obecnie klasyczną) i elektromagnetyzmu po ogłoszeniu przez Jamesa Clerka Maxwella teorii elektromagnetyzmu.
    Iloczyn tensorowy (zewnętrzny) tensorów[ | edytuj kod]

    Definicja[ | edytuj kod]

    Iloczynem tensorowym (zewnętrznym) nazywa się działanie dwuliniowe, które dwóm tensorom o typach oraz przypisuje tensor o typie

    Iloczyn tensorowy przestrzeni Hilberta H 1 {displaystyle {mathcal {H}}_{1}} i H 2 {displaystyle {mathcal {H}}_{2}} – najmniejsza w sensie izomorfizmu przestrzeń Hilberta, która zawiera iloczyn tensorowy H 1 {displaystyle {mathcal {H}}_{1}} i H 2 {displaystyle {mathcal {H}}_{2}} jako przestrzeni liniowych, dla której iloczyn skalarny tensorów (elementów ilocznu tensorowego przestrzeni liniowych H 1 {displaystyle {mathcal {H}}_{1}} i H 2 {displaystyle {mathcal {H}}_{2}} ) jest iloczynem odpowiednich iloczynów skalarnych.Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.

    taki, że jest on zbiorem wszystkich iloczynów składowych przemnażanych tensorów, tj.

    NASA (National Aeronautics and Space Administration) (pl. Narodowa Agencja Aeronautyki i Przestrzeni Kosmicznej) – agencja rządu Stanów Zjednoczonych odpowiedzialna za narodowy program lotów kosmicznych, ustanowiona 29 lipca 1958 r. na mocy National Aeronautics and Space Act, zastępując poprzednika – National Advisory Committee for Aeronautics. Jest wydziałem Departamentu Obrony USA i jest mu bezpośrednio podległa.Mechanika kwantowa (teoria kwantów) – teoria praw ruchu obiektów świata mikroskopowego. Poszerza zakres mechaniki na odległości czasoprzestrzenne i energie, dla których przewidywania mechaniki klasycznej nie sprawdzały się. Opisuje przede wszystkim obiekty o bardzo małych masach i rozmiarach - np. atom, cząstki elementarne itp. Jej granicą dla średnich rozmiarów lub średnich energii czy pędów jest mechanika klasyczna.

    Np. tensor utworzony z iloczynu dwóch wektorów – kontrawariantnego i kowariantnego, wyrażony bazie przestrzeni liniowej i kobazie przestrzeni dualnej ma postać sumy 9 składników:

    Konwencja sumacyjna Einsteina – to skrótowy sposób zapisu równań zawierających kilka znaków sumy. Stosuje się go w celu zwiększenia przejrzystości zapisu równań.Roman Stanisław Ingarden (ur. 1 października 1920 w Zakopanem, zm. 12 lipca 2011 w Krakowie) – polski fizyk matematyczny specjalizujący się w optyce i termodynamice statystycznej, syn filozofa Romana Witolda Ingardena, ojciec architekta Krzysztofa Ingardena oraz lekarza weterynarii Jacka Ingardena.

    (por. Przykład, gdzie pokazano dokładnie mnożenie tensorowe tensorów).

    Pochodna kowariantna – tensor powstały w wyniku różniczkowania pewnego tensora wyrażonego we współrzędnych krzywoliniowych przestrzeni euklidesowej i nieeuklidesowej dowolnego wymiaru (w ogólności w rozmaitości pseudoriemannowskiej), z określonym tensorem metrycznym. We współrzędnych kartezjańskich sprowadza się do zwykłej pochodnej cząstkowej. Gradient – w analizie matematycznej, a dokładniej rachunku wektorowym, pole wektorowe wskazujące kierunki najszybszych wzrostów wartości danego pola skalarnego w poszczególnych punktach, przy czym moduł (długość) każdej wartości wektorowej jest równy szybkości wzrostu. Wektor przeciwny do gradientu nazywa się często antygradientem.

    Twierdzenia[ | edytuj kod]

    Z definicji iloczynu tensorowego wynikają następujące twierdzenia:

    Tw. 1

    Jeżeli to

    Przestrzeń liniowa lub wektorowa – w matematyce zbiór obiektów (nazywanych "wektorami"), które mogą być, nieformalnie rzecz ujmując, skalowane i dodawane. Formalnie jest to zbiór z określonymi dwoma działaniami: dodawaniem elementów tej przestrzeni (wektorów) i mnożeniem przez elementy ustalonego ciała, które związane są ze sobą poniższymi aksjomatami. Przestrzenie liniowe to podstawowy obiekt badań algebry liniowej i analizy funkcjonalnej. Znajdują zastosowanie niemal we wszystkich gałęziach matematyki, naukach ścisłych i inżynierii.Rzut lub projekcja – w algebrze liniowej i analizie funkcjonalnej uogólnienie pojęcia rzutu znanego z geometrii elementarnej: idempotentny endomorfizm liniowy określony na danej przestrzeni liniowej, czyli operator liniowy zachowujący swój obraz, tzn. dla którego każdy element obrazu jest punktem stałym tego przekształcenia.

    Tw. 2

    Jeżeli to

    W teorii względności pole elektryczne i pole magnetyczne nie są opisywane jako osobne wektory w trójwymiarowej przestrzeni, lecz są składowymi czterowymiarowego antysymetrycznego tensora drugiego rodzaju (czyli po prostu 4x4) zwanego tensorem pola elektromagnetycznego. Tensor ten definiuje się przez pochodne czteropotencjału przy sygnaturze tensora metrycznego w szczególnej teorii względności (+,-,-,-) jako:Symbol Leviego-Civity (symbol zupełnie antysymetryczny) jest antysymetrycznym symbolem podobnym do delty Kroneckera, który jest zdefiniowany jako:

    Tw. 3

    W fizyce i matematyce grupa Poincarégo jest to grupa izometrii czasoprzestrzeni Minkowskiego. Jest to 10-wymiarowa grupa Liego nazwana na cześć jednego z twórców matematycznych podstaw teorii względności. Abelowa grupa translacji w czasoprzestrzeni jest podgrupą normalną, podczas gdy grupa Lorentza jest podgrupą, czyli pełna grupa Poincaré jest iloczynem półprostym translacji i transformacji Lorentza. Innym sposobem wyprowadzenia grupy Poincaré jest rozszerzenie grupy Lorentza za pomocą jej reprezentacji wektorowej. Zgodnie z programem z Erlangen, geometria czasoprzestrzeni Minkowskiego jest zdefiniowana przez grupę Poincarégo. Wedle tego programu przestrzeń Minkowskiego jest przestrzenią jednorodną dla grupy Poincarégo.Energia gr. ενεργεια (energeia) – skalarna wielkość fizyczna charakteryzująca stan układu fizycznego (materii) jako jego zdolność do wykonania pracy.

    Jeżeli

    Temperatura – jedna z podstawowych wielkości fizycznych (parametrów stanu) w termodynamice. Temperatura jest związana ze średnią energią kinetyczną ruchu i drgań wszystkich cząsteczek tworzących dany układ i jest miarą tej energii.Układ współrzędnych – funkcja przypisująca każdemu punktowi danej przestrzeni (w szczególności przestrzeni dwuwymiarowej – płaszczyzny, powierzchni kuli itp.) skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu.

    Tw. 4

    Przekształcenie wieloliniowe – w algebrze liniowej funkcja określona na iloczynie kartezjańskim przestrzeni liniowych w daną przestrzeń liniową (nad ustalonym ciałem), która jest liniowa ze względu na każdy argument z osobna. Jeżeli docelową przestrzeń liniową zastąpi się ciałem, nad którymi zbudowane są przestrzenie liniowe dziedziny, to tego rodzaju funkcje te nazywa się formami wieloliniowymi.Inaczej tensor energii-pędu jest tensorem wymiaru 4x4, będącym w ogólnej teorii względności źródłem zakrzywienia czasoprzestrzeni odczuwanego jako grawitacja. Każda jego składowa określa strumień czteropędu przez (trójwymiarową) hiperpowierzchnię przecinającą czterowymiarową czasoprzestrzeń fizyczną. Aby obliczyć składową [a,b] tego tensora w danym punkcie, bierzemy średnią (całkę) składowej a wektora czteropędu i dzielimy przez element hiperpowierzchni prostopadłej do wektora bazowego odpowiadającego wymiarowi b. Element [0,0] tego tensora to zwyczajna gęstość masy, składowe [0,a], gdzie 1 ≤ a ≤ 3 to gęstość pędu (średnia wartość pędu w jakimś obszarze, dzielona przez objętość tego obszaru), a część [a,b], gdzie a i b przyjmują wartości 1 do 3, to znany z techniki tensor napięć. Składowe diagonalne tego tensora to ciśnienie, a pozadiagonalne, to tzw. napięcie (albo naprężenie).

    Jeżeli to

    Pole elektromagnetyczne – pole fizyczne, stan przestrzeni, w której na obiekt fizyczny mający ładunek elektryczny działają siły o naturze elektromagnetycznej. Pole elektromagnetyczne jest układem dwóch pól: pola elektrycznego i pola magnetycznego. Pola te są wzajemnie związane, a postrzeganie ich zależy też od obserwatora, wzajemną relację pól opisują równania Maxwella. Własności pola elektromagnetycznego, jego oddziaływanie z materią bada dział fizyki zwany elektrodynamiką. W mechanice kwantowej pole elektromagnetyczne jest postrzegane jako wirtualne fotony.Ogólna teoria względności (OTW) – popularna nazwa teorii grawitacji formułowanej przez Alberta Einsteina w latach 1907–1915, a opublikowanej w roku 1916.

    Tw. 5

    Dywergencja (albo rozbieżność, źródłowość) pola wektorowego - operator różniczkowy przyporządkowujący trójwymiarowemu polu wektorowemu pole skalarne będące formalnym iloczynem skalarnym operatora nabla z polem. Operator dywergencji pojawia się w sposób naturalny w kontekście całkowania form zewnętrznych w przestrzeni trójwymiarowej (zob. twierdzenie Gaussa-Ostrogradskiego nazywane czasem twierdzeniem o dywergencji), a więc ma szereg konkretnych interpretacji fizycznych, związanych np. z mechaniką płynów.Wielkość fizyczna – właściwość fizyczna ciała lub zjawiska, którą można określić ilościowo, czyli zmierzyć.

    Iloczyn tensorowy nie jest przemienny, tzn. na ogół .

    Transformacje współrzędnych[ | edytuj kod]

    Gdy w przestrzeni przechodzimy z danej bazy do, to współrzędne tensorów transformują się zgodnie z dwiema regułami:

    Baza – pojęcie będące przeniesieniem oraz rozwinięciem idei układu współrzędnych kartezjańskich w przestrzeniach euklidesowych na abstrakcyjne przestrzenie liniowe.Skalar – w algebrze (liniowej) element ustalonego ciała nad którym zbudowany jest dowolny moduł (przestrzeń liniowa).

    (1) składowe kowariantne wektorów, tensorów 2-go rzędu itd. transformują poprzez macierz identyczną z macierzą transformacji bazy układu kartezjańskiego do bazy układu krzywoliniowego (mówi się, że składowe kowariantne transformują się współzmienniczo lub kowariantnie z wektorami bazy),

    (2) składowe kontrawariantne wektorów, tensorów transformują się poprzez macierz odwrotną (transformują się przeciwzmienniczo lub kontrawariantnie).

    Pseudoskalar – wielkość zachowywana w przesunięciu równoległym i obrocie układu współrzędnych, ale zmieniająca znak przy zmianie zwrotu każdej osi na przeciwny. W teorii algebr Clifforda nad n-wymiarową przestrzenią liniową z bazą { e 1 , … , e n } {displaystyle scriptstyle {mathbf {e} _{1},dots ,mathbf {e} _{n}}} przestrzenią pseudoskalarów jest jednowymiarowa przestrzeń rozpięta na iloczynie e 1 … e n {displaystyle scriptstyle mathbf {e} _{1}dots mathbf {e} _{n}} . Iloczyn wektora przez pseudoskalar daje pseudowektor.Czasoprzestrzeń – zbiór zdarzeń zlokalizowanych w przestrzeni i czasie, wyposażony w strukturę afiniczną i metryczną o określonej postaci, w zależności od analizowanego modelu fizycznej czasoprzestrzeni.

    Współrzędne zwykle grupuje się w wielowymiarowe tabelki (macierze).

    Pojedyncze równanie tensorowe rozpisane na składowe przechodzi w układ równań wiążących współrzędne tensorów.

    Pojawia się tutaj główna zaleta rachunku tensorowego: współrzędne są zależne od układu współrzędnych, jednak równania wiążące współrzędne są niezależne od układu, tj. w każdym układzie mają taką samą postać, przy założeniu, że transformacje między układami są wykonywane z ustalonymi regułami (np. transformacje Lorentza wiążą układy poruszające się względem siebie).

    Wektor (z łac. [now.], „niosący; ten, który niesie; nośnik”, od vehere, „nieść”; via, „droga”) – istotny w matematyce elementarnej, inżynierii i fizyce obiekt mający moduł (zwany też – zdaniem niektórych niepoprawnie - długością lub wartością), kierunek wraz ze zwrotem (określającym orientację wzdłuż danego kierunku).Grupa Lorentza – grupa transformacji układu współrzędnych 4-wymiarowej czasoprzestrzeni Minkowskiego, takich że interwały czasoprzestrzenne nie ulegają zmianie, przy czym początek układu współrzędnych pozostaje bez zmian.


    Podstrony: [1] [2] [3] 4 [5] [6] [7] [8] [9] [10] [11]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Macierz Jacobiego – macierz zbudowana z pochodnych cząstkowych (pierwszego rzędu) funkcji, której składowymi są funkcje rzeczywiste. Nazwa pojęcia pochodzi od nazwiska niemieckiego matematyka Carla Gustawa Jacobiego, który je wprowadził (niezależnie pojęcie to badał Michaił Ostrogradski).
    Pseudowektor (wektor osiowy) – wielkość fizyczna, która przy ciągłych transformacjach układu odniesienia (takich jak translacja lub obrót) przekształca się jak wektor, natomiast przy odbiciu zwierciadlanym i symetrii środkowej transformuje się odmiennie (np. zmienia zwrot wektora).
    Transformacja Galileusza – jest to transformacja współrzędnych przestrzennych i czasu z jednego układu odniesienia do innego, poruszającego się ruchem jednostajnym prostoliniowym względem pierwszego. W transformacji tej czas i odległości pomiędzy dwoma dowolnymi punktami pozostają stałe, czyli są niezależne od układu odniesienia. Transformacja Galileusza jest zgodna z klasycznymi wyobrażeniami o czasie i przestrzeni. Transformacja zakłada, że prędkość oraz położenie są względne. Wartości te widoczne dla dowolnego obserwatora w każdym inercjalnym układzie odniesienia mogą być różne, ale każda z nich jest prawdziwa. Względność oznacza, że pewne zjawiska fizyczne wyglądają różnie, obserwowane z różnych układów odniesienia. We wszystkich układach zegary obserwatorów mierzą czas absolutny, a więc on nie jest względny. Co więcej, wymiary liniowe obiektów też są identyczne w każdym układzie nieinercjalnym.
    Spinor to obiekt geometryczny o specyficznych własnościach transformacyjnych. Spinory transformują się względem reprezentacji spinorowej (ułamkowej) grupy przekształceń.
    Moment siły (moment obrotowy) siły F względem punktu O – iloczyn wektorowy promienia wodzącego r, o początku w punkcie O i końcu w punkcie przyłożenia siły, oraz siły F:
    Tensor metryczny jest to symetryczny tensor drugiego rzędu (dwuwymiarowy) opisujący związek danego układu współrzędnych z układem kartezjańskim. Jest on podstawowym pojęciem geometrii różniczkowej (oraz elektrodynamiki, teorii względności i innych teorii których językiem jest geometria różniczkowa), jego podstawowym zastosowaniem jest występowanie w iloczynie skalarnym dwóch wektorów (obowiązuje konwencja sumacyjna):
    Rozmaitość w matematyce, a szczególnie w geometrii różniczkowej i topologii, to podzbiór przestrzeni euklidesowej, który w dowolnym lokalnym obszarze można opisać (w ogólności wielowymiarową) funkcją gładką. Bardziej ogólnie rozmaitość topologiczną można przedstawić jako przestrzeń topologiczną, która w odpowiednio małej skali przypomina przestrzeń euklidesową określonego wymiaru, zwaną wymiarem rozmaitości. Stąd, linia i okrąg to rozmaitości jednowymiarowe, powierzchnia i sfera to rozmaitości dwuwymiarowe, i tak dalej w przestrzeniach o większej liczbie wymiarów. Bardziej formalnie, każdy punkt rozmaitości n-wymiarowej ma homeomorficzne sąsiedztwo w otwartym podzbiorze n-wymiarowej przestrzeni R.

    Reklama

    Czas generowania strony: 2.091 sek.