• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Szereg - matematyka



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Mnożenie przez skalar − jedno z działań dwuargumentowych definiujących przestrzeń liniową w algebrze liniowej (lub ogólniej: moduł w algebrze ogólnej). Mnożenia wektora przez skalar dającego w wyniku wektor nie należy mylić z iloczynem skalarnym (nazywanym niekiedy iloczynem wewnętrznym) dwóch wektorów dającym w wyniku skalar.Wartość bezwzględna a. moduł – dla danej liczby rzeczywistej wartość liczbowa nieuwzględniająca znaku liczby. Przykładowo Parser nie mógł rozpoznać (Nie można zapisać obrazu z wzorem w systemie plików.): 5

    Szereg – konstrukcja umożliwiająca wykonanie uogólnionego dodawania przeliczalnej liczby składników. Przykładem znanego szeregu jest dychotomia Zenona z Elei

    Wyrazy szeregu często powstają w wyniku zastosowania pewnej reguły, takiej jak np. wzór, czy algorytm. W przeciwieństwie do sumowania, do pełnego zrozumienia i manipulowania nimi szeregi wymagają narzędzi analizy matematycznej. Poza ich wszechobecnością w samej matematyce szeregi szeroko stosuje się w innych dyscyplinach ilościowych takich jak fizyka, czy informatyka; szczególnie ważne są rozmaite szeregi funkcyjne, w tym trygonometryczne, na czele z szeregiem Fouriera, czy potęgowe (za pomocą których można przybliżać z dowolną dokładnością wiele funkcji).

    Paradoksy Zenona z Elei – zbiór kilku paradoksów pochodzących od greckiego filozofa, Zenona z Elei. Są to paradoksy, które łączy ukazanie trudności w rozumieniu czasu i przestrzeni jako wielkości ciągłych, które można w związku z tym dzielić w nieskończoność. Oprócz znaczenia czysto filozoficznego, paradoksy te mają też znaczenie matematyczne i fizyczne.Iloczyn nieskończony - pojęcie analogiczne szeregowi; iloczyn nieskończenie wielu liczb (rzeczywistych lub zespolonych).

    Definicja[]

    Szeregi mogą składać się z elementów z dowolnego zbioru, w tym z liczb rzeczywistych, liczb zespolonych czy funkcji (wtedy mówi się o szeregach funkcyjnych). Poniższa definicja podana będzie dla liczb rzeczywistych, lecz można ją uogólniać.

    Dla danego nieskończonego ciągu liczb rzeczywistych definiuje się -tą sumę częściową ciągu bądź sumą częściową szeregu wzorem

    Ciąg geometryczny - ciąg liczbowy (skończony bądź nieskończony), którego każdy kolejny wyraz, oprócz pierwszego, jest iloczynem wyrazu poprzedniego przez pewną stałą nazywaną ilorazem. Ciąg geometryczny, nazywany także postępem geometrycznym, można traktować jako multiplikatywną wersję (addytywnego) ciągu arytmetycznego.Granica – pojęcie używane w matematyce określające zachowania funkcji, a w szczególności ciągu, gdy ich argumenty "zbliżają się" do pewnej wartości lub nieskończoności. Granice używane są w rachunku różniczkowo-całkowym i innych działach analizy matematyczej do definiowania pochodnych i ciągłości.

    Szeregiem nazywa się ciąg sum częściowych. Formalnie szereg należy więc traktować jako parę uporządkowaną .

    Szereg Fouriera – w matematyce szereg pozwalający rozłożyć funkcję okresową, spełniającą warunki Dirichleta, na sumę funkcji trygonometrycznych. Nauka na temat szeregów Fouriera jest gałęzią analizy Fouriera. Szeregi Fouriera zostały wprowadzone w 1807 roku przez Josepha Fouriera w celu rozwiązania równania ciepła dla metalowej płyty. Doprowadziło to jednak do przewrotu w matematyce i wprowadzenia wielu nowych teorii. Dziś mają one wielkie znaczenie między innymi w fizyce, teorii drgań, przetwarzaniu sygnałów, obrazów (kompresja jpeg), a nawet w muzyce (kompresja mp3).Szereg przemienny – szereg liczbowy, którego wyrazy są na przemian dodatnie i ujemne. Szereg przemienny można przedstawić w postaci:

    Sumą szeregu nazywa się liczbę , o ile granica ta istnieje i jest właściwa. W przeciwnym przypadku szereg nie ma sumy. Szereg, który ma sumę nazywa się zbieżnym, który jej nie ma − rozbieżnym.

    Przestrzeń liniowa lub wektorowa – w matematyce zbiór obiektów (nazywanych "wektorami"), które mogą być, nieformalnie rzecz ujmując, skalowane i dodawane. Formalnie jest to zbiór z określonymi dwoma działaniami: dodawaniem elementów tej przestrzeni (wektorów) i mnożeniem przez elementy ustalonego ciała, które związane są ze sobą poniższymi aksjomatami. Przestrzenie liniowe to podstawowy obiekt badań algebry liniowej i analizy funkcjonalnej. Znajdują zastosowanie niemal we wszystkich gałęziach matematyki, naukach ścisłych i inżynierii.Szereg funkcyjny – szereg, którego wyrazami są funkcje o wspólnej dziedzinie. Dla każdego punktu dziedziny suma szeregu wartości funkcji w tym punkcie (o ile istnieje) jest sumą zwykłego szeregu liczbowego. W zastosowaniach najczęściej pojawiają się szeregi funkcyjne zmiennej rzeczywistej lub zespolonej o wartościach rzeczywistych lub zespolonych, jednakże pojęcie szeregu funkcyjnego ma sens także w przypadku funkcji o wartościach w ogólnych przestrzeniach funkcyjnych (np. przestrzeniach Banacha).

    Zarówno szereg, jak i jego sumę oznacza się na jeden z następujących sposobów:

    To, które z tych pojęć jest odpowiednie wynika zwykle z kontekstu. Oddzielenie tych dwóch całkowicie różnych obiektów (ciągu i jego granicy) osiąga się niekiedy przez pominięcie granic (oznaczeń nad i pod symbolem sumy), np.

    Ciąg – w matematyce pojęcie oddające intuicję ponumerowania, czy też uporządkowania elementów zbioru. W zależności od rodzaju elementów zbioru stosuje się różne nazwy: w przypadku liczb mówi się o ciągach liczbowych, bądź bardziej precyzyjnie, np. w przypadku zbioru liczb całkowitych, rzeczywistych czy zespolonych, ciąg nazywa się wtedy odpowiednio ciągiem całkowitoliczbowym, rzeczywistym i zespolonym. Jeśli elementami zbioru są funkcje, to ciąg nazywa się ciągiem funkcyjnym. Ciąg powstały poprzez wybranie elementów innego ciągu nazywa się podciągiem.Permutacja – wzajemnie jednoznaczne przekształcenie pewnego zbioru na siebie. Najczęściej termin ten oznacza funkcję na zbiorach skończonych.

    symbol ten służy wtedy odnoszeniu się do szeregu formalnego, który może, lecz nie musi mieć określonej sumy.

    Przestrzeń liniowo-topologiczna – przestrzeń liniowa, w której istnieje taka topologia (dla której dodatkowo zakłada się, że każdy punkt tej przestrzeni jest zbiorem domkniętym, innymi słowy przestrzeń spełnia pierwszy aksjomat oddzielania), że działania dodawania wektorów i mnożenia przez skalar są ciągłe. Można udowodnić, że każda przestrzeń liniowo-topologiczna jest przestrzenią Hausdorffa, a nawet jest przestrzenią regularną. Grupa addytywna przestrzeni liniowo-topologicznej jest grupą topologiczną. Każda przestrzeń unormowana (a więc np. dowolna przestrzeń Banacha czy Hilberta) jest przestrzenią liniowo-topologiczną.Twierdzenie Riemanna – twierdzenie w analizie matematycznej autorstwa Berharda Riemanna mówiące o tym, że jeżeli szereg jest warunkowo zbieżny, to jego wyrazy można poprzestawiać w taki sposób, aby nowo otrzymany szereg był zbieżny do dowolnej liczby, a nawet był rozbieżny.

    Szeregiem, w zależności od autora, a czasem także od kontekstu, bywa też nazywana suma wszystkich elementów danego ciągu nieskończonego.

    Niżej stosowany będzie również symbol na oznaczenie obu rodzajów obiektów, o ile nie będzie prowadzić to do nieporozumień.

    Informatyka – dyscyplina nauki zaliczana do nauk ścisłych oraz techniki zajmująca się przetwarzaniem informacji, w tym również technologiami przetwarzania informacji oraz technologiami wytwarzania systemów przetwarzających informację. Początkowo stanowiła część matematyki, później rozwinęła się do odrębnej dyscypliny – pozostaje jednak nadal w ścisłej relacji z matematyką, która dostarcza informatyce podstaw teoretycznych.Przestrzeń Banacha – przestrzeń unormowana X (z normą ||·||), w której metryka wyznaczona przez normę, tj. metryka d dana wzorem


    Podstrony: 1 [2] [3] [4]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Funkcja (łac. functio, -onis, „odbywanie, wykonywanie, czynność”) – dla danych dwóch zbiorów X i Y przyporządkowanie każdemu elementowi zbioru X dokładnie jednego elementu zbioru Y. Oznacza się ją na ogół f, g, h itd.
    Przestrzeń unormowana – przestrzeń liniowa, w której określono pojęcie normy będące bezpośrednim uogólnieniem pojęcia długości (modułu) wektora w przestrzeni euklidesowej.
    Zbiór liczb rzeczywistych – uzupełnienie zbioru liczb wymiernych. Zbiór liczb rzeczywistych zawiera m.in. liczby naturalne, ujemne, całkowite, pierwiastki liczb dodatnich, wymierne, niewymierne, przestępne, itd. Z drugiej strony na liczby rzeczywiste można też patrzeć jak na szczególne przypadki liczb zespolonych.
    Wyrażenie algebraiczne – syntaktycznie wyrażenie matematyczne, złożone z jednego lub większej liczby symboli algebraicznych (tzn. stałych lub zmiennych), połączonych znakami działań (+, -, ·, /, potęgi i pierwiastka) i ewentualnie nawiasów, zgodnie z regułami notacji matematycznej.
    Algorytm – w matematyce skończony ciąg jasno zdefiniowanych czynności, koniecznych do wykonania pewnego rodzaju zadań. Słowo "algorytm" pochodzi od starego angielskiego słowa algorism, oznaczającego wykonywanie działań przy pomocy liczb arabskich (w odróżnieniu od abacism – przy pomocy abakusa), które z kolei wzięło się od nazwiska, które nosił Muhammad ibn Musa al-Chuwarizmi (أبو عبد الله محمد بن موسى الخوارزمي), matematyk perski z IX wieku.
    Kryteria zbieżności szeregów – grupa twierdzeń pozwalających ustalić, czy dany szereg jest zbieżny czy nie. W większości kryteria są warunkami koniecznymi na zbieżność lub rozbieżność szeregu - w takim przypadku niespełnienie kryterium oznacza pewność (poprzez kontrapozycję) co do zbieżności lub niezbieżności. Wyjątkiem jest kryterium Cauchy’ego będące warunkiem równoważnym.
    Granica ciągu – wartość, w której dowolnym otoczeniu znajdują się prawie wszystkie (tzn. wszystkie poza skończenie wieloma) wyrazy danego ciągu; precyzyjniej: wartość, dowolnie blisko której leżą wszystkie wyrazy ciągu o dostatecznie dużych wskaźnikach.

    Reklama

    Czas generowania strony: 0.041 sek.