• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Symetria osiowa

    Przeczytaj także...
    Prostopadłość – cecha geometryczna dwóch prostych lub płaszczyzn (albo prostej i płaszczyzny), które tworzą przystające kąty przyległe.Linia prosta lub prosta – jedno z podstawowych pojęć geometrii, szczególny przypadek nieograniczonej z obydwu stron krzywej o nieskończonym promieniu krzywizny w każdym punkcie.
    Przekształcenie, odwzorowanie geometryczne – funkcja przekształcająca jeden zbiór punktów, nazywany figurą geometryczną, w drugi zbiór punktów w przestrzeni geometrycznej (przestrzeni euklidesowej, przestrzeni rzutowej itp.). W węższym znaczeniu jest to funkcja wzajemnie jednoznaczna przeprowadzająca przestrzeń geometryczną na siebie; ta druga definicja jest stosowana dla przekształceń geometrycznych tworzących grupy przekształceń.

    Symetria osiowa (symetria względem osi) - odwzorowanie geometryczne płaszczyzny lub przestrzeni, które dla ustalonej osi tj. prostej l każdemu punktowi P swojej dziedziny przyporządkowuje punkt Q taki, że punkty P i Q wyznaczają prostą przecinającą prostopadle oś l i leżą w równej odległości od osi l po jej przeciwnych stronach.

    Płaszczyzna – jedno z podstawowych pojęć pierwotnych geometrii Euklidesa i geometrii absolutnej. W niektórych innych aksjomatyzacjach geometrii, na przykład w geometrii analitycznej, płaszczyzna nie jest pojęciem pierwotnym, lecz zbiorem punktów.Izometria (gr. isos – równy, métron – miara; także przekształcenie izometryczne, izomorfizm izometryczny) – funkcja zachowująca odległości między punktami przestrzeni metrycznej. W geometrii figury między którymi istnieje izometria (są izometryczne) nazywne są przystającymi.

    Z definicji bezpośrednio wynika, że punktami stałymi symetrii osiowej Sl są wszystkie punkty prostej l i tylko one.

    Fakt, że punkt Q jest obrazem punktu P, można też zapisać korzystając z pojęcia wektora: gdzie punkt R jest rzutem prostokątnym punktu P na prostą l.

    Rzut prostokątny – odwzorowanie przestrzeni euklidesowej trójwymiarowej na daną płaszczyznę w ten sposób, że każdemu punktowi przestrzeni przypisany jest punkt przecięcia się prostej prostopadłej do płaszczyzny, która przechodzi przez dany punkt, z płaszczyzną. Rzut prostokątny jest szczególnym przypadkiem rzutu równoległego.Inwolucja – w matematyce funkcja, która ma funkcję odwrotną równą jej samej. Równoważnie jest to taka funkcja, która złożona sama ze sobą jest tożsamością.

    Symetrię względem osi l oznacza się najczęściej jako Sl.

    Obraz figury F w symetrii osiowej S względem prostej p:
    F1 = Sp(F)

    Dowolna symetria osiowa jest inwolucją, tzn. jest identyczna z odwzorowaniem do niej odwrotnym.

    Figurę geometryczną F, która jest swoim obrazem w symetrii osiowej Sl (Sl(F) = F), nazywa się figurą geometryczną osiowo symetryczną (lub mówi się, że figura F ma oś symetrii). Prosta l jest osią symetrii figury F.

    Symetria osiowa na płaszczyźnie[]

    Każda symetria osiowa na płaszczyźnie jest izometrią nieparzystą, ponieważ zmienia orientację płaszczyzny. Symetria osiowa jest jedyną nietożsamościową izometrią płaszczyzny mającą dwa różne punkty stałe. Dla dowolnej izometrii płaszczyzny istnieją jedna, dwie lub trzy symetrie osiowe, z których można złożyć tę izometrię.

    Symetria płaszczyznowa względem płaszczyzny P – odwzorowanie geometryczne przestrzeni przyporządkowujące każdemu punktowi A tej przestrzeni punkt A’ taki, że punkty A i A’ leżą na prostej prostopadłej do P, w równych odległościach od płaszczyzny P i po jej przeciwnych stronach .Przestrzeń – zbiór, w którym określone są rozmaite relacje i działania pomiędzy jego elementami. Synonim pojęcia struktury matematycznej używany dla oddania pewnych intuicji matematycznych oraz w celu skrócenia wypowiedzi.

    Symetria osiowa w przestrzeni[]

    Symetria osiowa Sl w przestrzeni jest złożeniem dwóch dowolnych symetrii płaszczyznowych SP i SQ takich, że płaszczyzny P i Q są prostopadłe i P ∩ Q = l'

    Zobacz też[]

  • symetria środkowa
  • symetria płaszczyznowa



  • w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Symetria środkowa o środku P (symetria względem punktu P) – odwzorowanie geometryczne SP prostej, płaszczyzny lub przestrzeni takie, że SP(Q) = R wtedy i tylko wtedy, gdy punkt P, nazywany środkiem symetrii środkowej, jest środkiem odcinka QR. Punkty Q i R nazywa się punktami symetrycznymi względem środka symetrii P.

    Reklama

    Czas generowania strony: 0.013 sek.