• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Symetria osiowa

    Przeczytaj także...
    Prostopadłość – cecha geometryczna dwóch prostych lub płaszczyzn (albo prostej i płaszczyzny), które tworzą przystające kąty przyległe.Linia prosta lub prosta – jedno z podstawowych pojęć geometrii, szczególny przypadek nieograniczonej z obydwu stron krzywej o nieskończonym promieniu krzywizny w każdym punkcie.
    Przekształcenie, odwzorowanie geometryczne – funkcja przekształcająca jeden zbiór punktów, nazywany figurą geometryczną, w drugi zbiór punktów w przestrzeni geometrycznej (przestrzeni euklidesowej, przestrzeni rzutowej itp.). W węższym znaczeniu jest to funkcja wzajemnie jednoznaczna przeprowadzająca przestrzeń geometryczną na siebie; ta druga definicja jest stosowana dla przekształceń geometrycznych tworzących grupy przekształceń.

    Symetria osiowa (symetria względem osi) – odwzorowanie geometryczne płaszczyzny lub przestrzeni, które dla ustalonej osi, tj. prostej, każdemu punktowi swojej dziedziny przyporządkowuje taki punkt że punkty i wyznaczają prostą przecinającą prostopadle oś i leżą w równej odległości od osi l po jej przeciwnych stronach. Symetrię względem osi oznacza się najczęściej jako

    Płaszczyzna – jedno z podstawowych pojęć pierwotnych geometrii Euklidesa i geometrii absolutnej. W niektórych innych aksjomatyzacjach geometrii, na przykład w geometrii analitycznej, płaszczyzna nie jest pojęciem pierwotnym, lecz zbiorem punktów.Izometria (gr. isos – równy, métron – miara; także przekształcenie izometryczne, izomorfizm izometryczny) – funkcja zachowująca odległości między punktami przestrzeni metrycznej. W geometrii figury między którymi istnieje izometria (są izometryczne) nazywne są przystającymi.

    Z definicji bezpośrednio wynika, że punktami stałymi symetrii osiowej są wszystkie punkty prostej i tylko one. Dowolna symetria osiowa jest inwolucją, tzn. jest identyczna z odwzorowaniem do niej odwrotnym.

    Symetria (gr. συμμετρια, od συμ, podobny oraz μετρια, miara) – właściwość figury, bryły lub ogólnie dowolnego obiektu matematycznego (można mówić np. o symetrii równań), polegająca na tym, iż istnieje należące do pewnej zadanej klasy przekształcenie nie będące identycznością, które odwzorowuje dany obiekt na niego samego. Brak takiej właściwości nazywany jest asymetrią. W zależności od klasy dopuszczalnych przekształceń wyróżnia się rozmaite rodzaje symetrii. Tym samym pojęciem określa się nie tylko obiekty, ale też same przekształcenia.Rzut prostokątny – odwzorowanie przestrzeni euklidesowej trójwymiarowej na daną płaszczyznę w ten sposób, że każdemu punktowi przestrzeni przypisany jest punkt przecięcia się prostej prostopadłej do płaszczyzny, która przechodzi przez dany punkt, z płaszczyzną. Rzut prostokątny jest szczególnym przypadkiem rzutu równoległego.

    Fakt, że punkt jest obrazem punktu można też zapisać korzystając z pojęcia wektora: gdzie punkt R jest rzutem prostokątnym punktu na prostą

    Inwolucja – w matematyce funkcja, która ma funkcję odwrotną równą jej samej. Równoważnie jest to taka funkcja, która złożona sama ze sobą jest tożsamością.Symetria płaszczyznowa względem płaszczyzny P – odwzorowanie geometryczne przestrzeni przyporządkowujące każdemu punktowi A tej przestrzeni punkt A’ taki, że punkty A i A’ leżą na prostej prostopadłej do P, w równych odległościach od płaszczyzny P i po jej przeciwnych stronach .
    Obraz figury F w symetrii osiowej S względem prostej p: F1 = Sp(F)

    Figurę geometryczną która jest swoim obrazem w symetrii osiowej nazywa się figurą geometryczną osiowo symetryczną (lub mówi się, że figura ma oś symetrii). Prosta jest osią symetrii figury

    Przestrzeń – zbiór, w którym określone są rozmaite relacje i działania pomiędzy jego elementami. Synonim pojęcia struktury matematycznej używany dla oddania pewnych intuicji matematycznych oraz w celu skrócenia wypowiedzi.Symetria środkowa o środku P (symetria względem punktu P) – odwzorowanie geometryczne SP prostej, płaszczyzny lub przestrzeni takie, że SP(Q) = R wtedy i tylko wtedy, gdy punkt P, nazywany środkiem symetrii środkowej, jest środkiem odcinka QR. Punkty Q i R nazywa się punktami symetrycznymi względem środka symetrii P.

    Symetria osiowa na płaszczyźnie[ | edytuj kod]

    Każda symetria osiowa na płaszczyźnie jest izometrią nieparzystą, ponieważ zmienia orientację płaszczyzny. Symetria osiowa jest jedyną nietożsamościową izometrią płaszczyzny mającą dwa różne punkty stałe. Dla dowolnej izometrii płaszczyzny istnieją jedna, dwie lub trzy symetrie osiowe, z których można złożyć tę izometrię.

    Gemeinsame Normdatei (GND) – kartoteka wzorcowa, stanowiąca element centralnego katalogu Niemieckiej Biblioteki Narodowej (DNB), utrzymywanego wspólnie przez niemieckie i austriackie sieci biblioteczne.

    Symetria osiowa w przestrzeni[ | edytuj kod]

    Symetria osiowa w przestrzeni jest złożeniem dwóch dowolnych symetrii płaszczyznowych i takich, że płaszczyzny i są prostopadłe i

    Zobacz też[ | edytuj kod]

  • symetria płaszczyznowa
  • symetria środkowa




  • Reklama

    Czas generowania strony: 0.017 sek.