• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Symetria figury



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Przestrzeń euklidesowa – przestrzeń o geometrii euklidesowej. Jest ona naturalnym elementem modeli świata rzeczywistego (łac. geometria = mierzenie ziemi) i stanowi dobre przybliżenie przestrzeni fizycznych w warunkach makroskopowych, jednak nie nadaje się do opisu rzeczywistości w bardzo małych, atomowych, lub bardzo wielkich, astronomicznych, wielkościach. Jednowymiarowa przestrzeń euklidesowa nazywana jest prostą euklidesową, zaś dwuwymiarowa – płaszczyzną euklidesową. Przestrzenie te nazywa się również przestrzeniami afinicznymi euklidesowymi w odróżnieniu od przestrzeni liniowych euklidesowych, znanych szerzej jako przestrzenie unitarne.Kwadrat magiczny – tablica składająca się z n wierszy i n kolumn (n>2), w którą wpisano n różnych nie powtarzających się dodatnich liczb naturalnych w ten sposób, że suma liczb w każdym wierszu, w każdej kolumnie i w każdej przekątnej jest taka sama (tzw. suma magiczna). Kwadrat, w którym suma liczb w każdym wierszu i każdej kolumnie jest taka sama, ale sumy liczb w przekątnych są różne, nazywa się półmagicznym.

    W języku potocznym używa się słów symetria (gr. συμμετρια) oraz symetryczny w odniesieniu do przedmiotu, obrazu itp. składającego się z dwóch części, z których każda jest jakby lustrzanym odbiciem drugiej (w poziomie lub pionie), np. litery A, H, I, M, T, B, C, D, O oraz pary liter pq, bd są symetryczne w tym sensie.

    Prostopadłość – cecha geometryczna dwóch prostych lub płaszczyzn (albo prostej i płaszczyzny), które tworzą przystające kąty przyległe.Trójkąt Sierpińskiego (znany też jako uszczelka Sierpińskiego) – jeden z najprostszych fraktali. Znany był na długo przed powstaniem tego pojęcia (patrz Benoit Mandelbrot). Konstrukcja tego zbioru była podana przez polskiego matematyka Wacława Sierpińskiego w 1915.

    W terminologii matematycznej termin symetria ma znaczenie istotnie szersze. Obejmuje też inne własności figur, np. symetria liter N, S, Z nie jest wprawdzie lustrzana, ale po obrocie o 180º figura wygląda identycznie. Ponadto symetrie w matematyce są ujmowane jako pewnego typu przekształcenia figur geometrycznych. Do symetrii zalicza się obroty o wielokrotności danego kąta (np. o 30º, 60º, 90º,…) oraz wielkie bogactwo symetrii ornamentów, np. rozet w gotyckich katedrach

    Linia prosta lub prosta – jedno z podstawowych pojęć geometrii, szczególny przypadek nieograniczonej z obydwu stron krzywej o nieskończonym promieniu krzywizny w każdym punkcie.Figura geometryczna – w geometrii inna nazwa podzbioru danej przestrzeni, zwykle przestrzeni euklidesowej, afinicznej lub rzutowej.

    Symetria jest to więc właściwość figury, bryły lub ogólnie dowolnego obiektu matematycznego (można mówić np. o symetrii równań), polegająca na tym, iż istnieje należące do pewnej zadanej klasy przekształcenie nie będące identycznością, które odwzorowuje dany obiekt na niego samego. Brak takiej właściwości nazywany jest asymetrią. W zależności od klasy dopuszczalnych przekształceń wyróżnia się rozmaite rodzaje symetrii. Tym samym terminem określa się nie tylko obiekty, ale też same przekształcenia.

    Teoria grup – dział algebry, uważany za dość autonomiczną dziedzinę matematyki (w szczególności teoria grup abelowych, czyli przemiennych), który bada własności struktur algebraicznych nazywanych grupami, czyli zbiorów z wyróżnionym łącznym dwuargumentowym działaniem wewnętrznym mającym element neutralny i w którym każdy element jest odwracalny.Język grecki, greka (starogr. dialekt attycki Ἑλληνικὴ γλῶττα, Hellenikè glõtta; nowogr. Ελληνική γλώσσα, Ellinikí glóssa lub Ελληνικά, Elliniká) – język indoeuropejski z grupy helleńskiej, w starożytności ważny język basenu Morza Śródziemnego. W cywilizacji Zachodu zaadaptowany obok łaciny jako język terminologii naukowej, wywarł wpływ na wszystkie współczesne języki europejskie, a także część pozaeuropejskich i starożytnych. Od X wieku p.n.e. zapisywany jest alfabetem greckim. Obecnie, jako język nowogrecki, pełni funkcję języka urzędowego w Grecji i Cyprze. Jest też jednym z języków oficjalnych Unii Europejskiej. Po grecku mówi współcześnie około 15 milionów ludzi. Język grecki jest jedynym językiem z helleńskich naturalnych, który nie wymarł.

    Najważniejsze typy symetrii geometrycznych[ | edytuj kod]

    Dla figur płaskich i przestrzennych w zależności od rodzaju przekształcenia wyróżniana jest m.in.:

    Palindrom (gr. palindromeo – biec z powrotem) – wyrażenie brzmiące tak samo czytane od lewej do prawej i od prawej do lewej. Przykładem palindromu jest: Kobyła ma mały bok. Współcześnie palindromy pełnią funkcję gry słownej. Prawdopodobnie tak było również i w przeszłości, choć pewne znaleziska sugerują, że palindromy mogły też mieć znaczenie magiczne.Punkt stały odwzorowania pewnego zbioru w siebie - punkt, w którym wartość odwzorowania na argumencie jest równa temu argumentowi. Formalnie:
  • symetria środkowa – przekształceniem jest odbicie zwierciadlane figury względem ustalonego punktu zwanego środkiem symetrii. Na płaszczyźnie symetria środkowa jest złożeniem dwóch symetrii osiowych o prostopadłych osiach (lub obrót o kąt 180 stopni), w przestrzeni jest złożeniem trzech symetrii płaszczyznowych o wzajemnie prostopadłych płaszczyznach symetrii.
  • Symetria osiowa
  • symetria osiowa – przekształceniem jest odbicie zwierciadlane figury względem zadanej prostej zwanej osią symetrii. Symetria osiowa występuje m.in. w trójkącie Sierpińskiego.
  • symetria płaszczyznowa – przekształceniem jest odbicie zwierciadlane figury względem płaszczyzny zwanej płaszczyzną symetrii. Symetria płaszczyznowa występuje m.in. w piramidzie Sierpińskiego oraz kostce Mengera.
  • symetria obrotowa (gwiaździsta) – przekształceniem jest na płaszczyźnie obrót figury wokół zadanego punktu o kąt będący podwielokrotnością kąta pełnego, a w przestrzeni wokół zadanej prostej (można wykazać, że musi być to środek masy i prosta przez niego przechodząca).
  • symetria z obrotem (zwierciadlano-obrotowa) – na płaszczyźnie jest to złożenie symetrii względem prostej z obrotem o dowolny kąt wokół zadanego punktu. W przestrzeni jest złożeniem symetrii płaszczyznowej z obrotem wokół osi symetrii (symetria cylindryczna). [Niektóre pozycje książkowe podają, że w przestrzeni oś obrotu musi być prostopadła do płaszczyzny symetrii.]
  • symetria sferyczna – przekształceniem jest dowolny obrót bryły wokół zadanego punktu. Własność tę posiada m.in. kula.
  • symetria parzysta – złożenie parzystej liczby symetrii osiowych (na płaszczyźnie) lub płaszczyznowych (w przestrzeni). Przykładem jest symetria środkowa (złożenie dwóch prostopadłych osi symetrii).
  • symetria nieparzysta – złożenie nieparzystej liczby symetrii osiowych (na płaszczyźnie) lub płaszczyznowych (w przestrzeni).
  • symetria ukośna – uogólnienie symetrii osiowej. Jeśli dane są dwie proste i przecinające się pod kątem α, oraz dany jest odcinek to symetria ukośna względem prostej w kierunku prostej polega na tym, że przez punkty i prowadzimy proste i równoległe do prostej przecinające prostą odpowiednio w punktach i i znajdujemy na nich punkty i w taki sposób, że odległość od punktu do jest równa odległości od punktu do oraz analogicznie
  • Przekształcenie, odwzorowanie geometryczne – funkcja przekształcająca jeden zbiór punktów, nazywany figurą geometryczną, w drugi zbiór punktów w przestrzeni geometrycznej (przestrzeni euklidesowej, przestrzeni rzutowej itp.). W węższym znaczeniu jest to funkcja wzajemnie jednoznaczna przeprowadzająca przestrzeń geometryczną na siebie; ta druga definicja jest stosowana dla przekształceń geometrycznych tworzących grupy przekształceń.Płaszczyzna – jedno z podstawowych pojęć pierwotnych geometrii Euklidesa i geometrii absolutnej. W niektórych innych aksjomatyzacjach geometrii, na przykład w geometrii analitycznej, płaszczyzna nie jest pojęciem pierwotnym, lecz zbiorem punktów.


    Podstrony: 1 [2] [3] [4]




    Warto wiedzieć że... beta

    Przekształcenie tożsamościowe to dowolne przekształcenie danego wyrażenia algebraicznego, które daje w wyniku wyrażenie tożsamościowo mu równe.
    Symetria osiowa (symetria względem osi) - odwzorowanie geometryczne płaszczyzny lub przestrzeni, które dla ustalonej osi tj. prostej l każdemu punktowi P swojej dziedziny przyporządkowuje punkt Q taki, że punkty P i Q wyznaczają prostą przecinającą prostopadle oś l i leżą w równej odległości od osi l po jej przeciwnych stronach.
    Symetria płaszczyznowa względem płaszczyzny P – odwzorowanie geometryczne przestrzeni przyporządkowujące każdemu punktowi A tej przestrzeni punkt A’ taki, że punkty A i A’ leżą na prostej prostopadłej do P, w równych odległościach od płaszczyzny P i po jej przeciwnych stronach .
    Środek masy ciała lub układu ciał – punkt, w którym skupiona jest cała masa w opisie układu jako masy punktowej. Pojęcie to jest wykorzystywane także w geometrii.
    Kąt (płaski) w geometrii euklidesowej – każda z dwóch części (tj. podzbiorów) płaszczyzny zawartych między dwiema półprostymi (wraz z nimi), nazwanymi ramionami, o wspólnym początku, zwanym wierzchołkiem. Czyli jest to część wspólna dwóch półpłaszczyzn wyznaczonych przez dwie nierównoległe proste, wraz z ich brzegami nazywanymi ramionami; ich punkt przecięcia to wierzchołek).
    Hiperpłaszczyzna (dawn. zbiór liniowy) w przestrzeni euklidesowej n-wymiarowej to zbiór rozwiązań równania postaci:
    Fraktal (łac. fractus – złamany, cząstkowy, ułamkowy) w znaczeniu potocznym oznacza zwykle obiekt samo-podobny (tzn. taki, którego części są podobne do całości) albo "nieskończenie subtelny" (ukazujący subtelne detale nawet w wielokrotnym powiększeniu). Ze względu na olbrzymią różnorodność przykładów matematycy obecnie unikają podawania ścisłej definicji i proponują określać fraktal jako zbiór, który:

    Reklama

    Czas generowania strony: 0.025 sek.