• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Symetria - fizyka



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Teorie pól kwantowych (ang. QFT – Quantum Field Theory) – współczesne teorie fizyczne tłumaczące oddziaływania podstawowe. Są one rozwinięciem mechaniki kwantowej zapewniającym jej zgodność ze szczególną teorią względności.Szczególna teoria względności (STW) – teoria fizyczna stworzona przez Alberta Einsteina w 1905 roku. Zmieniła ona sposób pojmowania czasu i przestrzeni opisane wcześniej w newtonowskiej mechanice klasycznej. Teoria pozwoliła usunąć trudności interpretacyjne i sprzeczności pojawiające się na styku mechaniki (zwanej obecnie klasyczną) i elektromagnetyzmu po ogłoszeniu przez Jamesa Clerka Maxwella teorii elektromagnetyzmu.

    Symetria – rodzaj symetrii, której podlegają przestrzeń, pola kwantowe, równania pola, lagranżjany, hamiltoniany itp. Symetrie są obecnie podstawowym narzędziem fizyki: z ich istnienia można wywnioskować zasady zachowania (twierdzenie Noether) oraz wszystkie własności cząstek elementarnych, takie jak ładunki, masy i oddziaływania, w których uczestniczą. Jeżeli jakiejś własności nie można wyprowadzić z zasad symetrii, tylko trzeba ją postulować arbitralnie, to teorię taką uznajemy za niekompletną.

    Wszechświat – wszystko, co fizycznie istnieje: cała przestrzeń, czas, wszystkie formy materii i energii oraz prawa fizyki i stałe fizyczne określające ich zachowanie. Słowo „wszechświat” może być też używane w innych kontekstach jako synonim słów „kosmos” (w rozumieniu filozofii), „świat” czy „natura”. W naukach ścisłych słowa „wszechświat” i „kosmos” są równoważne.Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.

    Aby opisać symetrię, podaje się często grupę przekształceń, względem których symetria zachodzi, albo zbiór generatorów, które określają tę grupę.

    Symetrie przestrzeni[ | edytuj kod]

    Za uniwersalną własność przestrzeni uznaje się jej jednorodność (symetrię względem przesunięć), izotropię (symetrię względem obrotów) i zasadę względności (symetrię względem przekształceń Lorentza). Inne obserwowane symetrie są być może odbiciem przekształceń w hipotetycznych dodatkowych wymiarach Wszechświata.

    Czas – skalarna (w klasycznym ujęciu) wielkość fizyczna określająca kolejność zdarzeń oraz odstępy między zdarzeniami zachodzącymi w tym samym miejscu. Pojęcie to było również przedmiotem rozważań filozoficznych.Grupa SO(2) (grupa specjalna ortogonalna rzędu 2) to grupa macierzy antysymetrycznych 2x2 taka, że każda macierz tej grupy jest postaci:

    Istnieje też hipoteza Macha, głosząca, że prawa fizyki są takie same w układach poruszających się względem siebie ruchem przyspieszonym. Ogólna teoria względności jest w pewnym stopniu oparta o hipotezę Macha.

    Symetrie tworzą grupy przekształceń ze względu na ich składanie. Przykłady grup symetrii:

  • grupa przesunięć (translacji)
  • grupa obrotów SO(3) w trójwymiarowej przestrzeni euklidesowej
  • grupa Galileusza SO(3)xO(1) – symetria fizyki newtonowskiej (przestrzeni z czasem)
  • grupa Lorentza SO(3,1) – symetria teorii względności (czasoprzestrzeni, przestrzeni Minkowskiego)
  • grupa Poincarego – grupa Lorentza wraz z przesunięciami, symetria teorii pól kwantowych
  • odbicie przestrzenne P – inaczej odbicie lustrzane (jest to symetria przybliżona)
  • odwrócenie czasu T – odwrócenie biegu czasu (jest to symetria przybliżona)
  • Kwantowy oscylator harmoniczny – układ fizyczny rozmiarów atomowych lub subatomowych (np. jon w sieci krystalicznej lub w cząsteczka gazu) wykonujący ruch drgający (oscylacyjny) pod wpływem siły proporcjonalnej do wychylenia od położenia równowagi. Właściwy opis ruchu wymaga zastosowania mechaniki kwantowej, co sprowadza się do znalezienia rozwiązań równania Schrödingera. Dowodem eksperymentalnym konieczności zastosowania mechaniki kwantowej do opisu właściwości mikroskopowych układów drgających jest np. nieciągłe widmo promieniowania emitowane przez drgające cząsteczki. Makroskopowym odpowiednikiem oscylatora kwantowego jest klasyczny oscylator harmoniczny, którym jest ciało makroskopowe o stosunkowo dużej masie, zawieszone np. na sprężynie i wykonujące drgania; do opisu jego ruchu wystarczająca jest mechanika klasyczna. Pojęcie oscylatora ma duże zastosowanie i znaczenie w wielu działach fizyki klasycznej i kwantowej.W fizyce cząstek bozony (ang. boson od nazwiska fizyka Satyendra Bose), są cząstkami posiadającymi spin całkowity. Większość bozonów to cząstki złożone, jednakże 12 z nich (tak zwane bozony cechowania) są cząstkami elementarnymi, niezłożonymi z mniejszych cząstek (cząstki fundamentalne).


    Podstrony: 1 [2] [3] [4]




    Warto wiedzieć że... beta

    Supersymetria (SUSY) – hipotetyczna symetria z zakresu fizyki cząstek elementarnych przekształcająca bozony w fermiony.
    Teorie wielkiej unifikacji (GUT z ang. Grand Unification Theory) – teorie łączące chromodynamikę kwantową i teorię oddziaływań elektrosłabych. Przedstawiają one oddziaływanie silne, słabe i elektromagnetyczne jako przejaw jednego, zunifikowanego oddziaływania. Żadna z dotychczasowych teorii wielkiej unifikacji nie została potwierdzona doświadczalnie.
    Stanford Encyclopedia of Philosophy (SEP) jest ogólnie dostępną encyklopedią internetową filozofii opracowaną przez Stanford University. Każde hasło jest opracowane przez eksperta z danej dziedziny. Są wśród nich profesorzy z 65 ośrodków akademickich z całego świata. Autorzy zgodzili się na publikację on-line, ale zachowali prawa autorskie do poszczególnych artykułów. SEP ma 1260 haseł (stan na 20 stycznia 2011). Mimo, że jest to encyklopedia internetowa, zachowano standardy typowe dla tradycyjnych akademickich opracowań, aby zapewnić jakość publikacji (autorzy-specjaliści, recenzje wewnętrzne).
    Czasoprzestrzeń Minkowskiego – przestrzeń liniowa w fizyce i matematyce, która łącząc czas z przestrzenią trówymiarową umożliwia formalny zapis równań szczególnej teorii względności Einsteina. Nazwę zawdzięcza niemieckiemu matematykowi Hermannowi Minkowskiemu, który opisał ją w 1907.
    W matematyce, grupa Liego to grupa, która jest zarazem gładką rozmaitością. Można na nią patrzeć jako na zbiór z dodatkowymi strukturami rozmaitości i grupy. Przykładem grupy Liego jest grupa obrotów przestrzeni trójwymiarowej. Grupy Liego są często spotykane w analizie matematycznej, fizyce i geometrii. Zostały po raz pierwszy wprowadzone przez Sophusa Liego w 1870 roku do badania równań różniczkowych.
    Symetria (gr. συμμετρια, od συμ, podobny oraz μετρια, miara) – właściwość figury, bryły lub ogólnie dowolnego obiektu matematycznego (można mówić np. o symetrii równań), polegająca na tym, iż istnieje należące do pewnej zadanej klasy przekształcenie nie będące identycznością, które odwzorowuje dany obiekt na niego samego. Brak takiej właściwości nazywany jest asymetrią. W zależności od klasy dopuszczalnych przekształceń wyróżnia się rozmaite rodzaje symetrii. Tym samym pojęciem określa się nie tylko obiekty, ale też same przekształcenia.
    W fizyce i matematyce grupa Poincarégo jest to grupa izometrii czasoprzestrzeni Minkowskiego. Jest to 10-wymiarowa grupa Liego nazwana na cześć jednego z twórców matematycznych podstaw teorii względności. Abelowa grupa translacji w czasoprzestrzeni jest podgrupą normalną, podczas gdy grupa Lorentza jest podgrupą, czyli pełna grupa Poincaré jest iloczynem półprostym translacji i transformacji Lorentza. Innym sposobem wyprowadzenia grupy Poincaré jest rozszerzenie grupy Lorentza za pomocą jej reprezentacji wektorowej. Zgodnie z programem z Erlangen, geometria czasoprzestrzeni Minkowskiego jest zdefiniowana przez grupę Poincarégo. Wedle tego programu przestrzeń Minkowskiego jest przestrzenią jednorodną dla grupy Poincarégo.

    Reklama

    Czas generowania strony: 0.03 sek.