• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Suma zbiorów



    Podstrony: 1 [2] [3]
    Przeczytaj także...
    Obraz – zbiór wszystkich wartości (należących do przeciwdziedziny) przyjmowanych przez funkcję dla każdego elementu danego podzbioru jej dziedziny. Przeciwobraz – zbiór wszystkich elementów dziedziny, które są odwzorowywane na elementy danego podzbioru przeciwdziedziny.Część wspólna zbiorów A i B (przekrój, iloczyn mnogościowy, przecięcie zbiorów) – zbiór, który zawiera te i tylko te elementy, które należą jednocześnie do zbioru A i do zbioru B. Część wspólną definiuje się także dla dowolnych niepustych rodzin zbiorów.
    Warto wiedzieć że... beta

    Obraz – zbiór wszystkich wartości (należących do przeciwdziedziny) przyjmowanych przez funkcję dla każdego elementu danego podzbioru jej dziedziny. Przeciwobraz – zbiór wszystkich elementów dziedziny, które są odwzorowywane na elementy danego podzbioru przeciwdziedziny.
    Podzbiór – pewna „część” danego zbioru, czyli dla danego zbioru, nazywanego nadzbiorem, zbiór składający się z pewnej liczby jego elementów, np. żadnego, jednego, wszystkich. Pierwszy przypadek nazywa się podzbiorem pustym, drugi – podzbiorem jednoelementowym lub singletonem, trzeci – podzbiorem niewłaściwym.
    Część wspólna zbiorów A i B (przekrój, iloczyn mnogościowy, przecięcie zbiorów) – zbiór, który zawiera te i tylko te elementy, które należą jednocześnie do zbioru A i do zbioru B. Część wspólną definiuje się także dla dowolnych niepustych rodzin zbiorów.
    Teoria mnogości lub inaczej: teoria zbiorów – dział matematyki, a zarazem logiki matematycznej zapoczątkowany przez niemieckiego matematyka Georga Cantora pod koniec XIX wieku. Teoria początkowo wzbudzała wiele kontrowersji, jednak wraz z postępem matematyki zaczęła ona pełnić rolę fundamentu, na którym opiera się większość matematycznych rozważań.
    Aksjomaty Zermelo-Fraenkela, w skrócie: aksjomaty ZF – powszechnie przyjmowany system aksjomatów zaproponowany przez Ernsta Zermelo w 1904 roku, który został później uzupełniony przez Abrahama Fraenkela.
    Przedział – zbiór elementów danego zbioru częściowo uporządkowanego, zawartych między dwoma ustalonymi elementami tego zbioru, nazywanymi początkiem i końcem przedziału.
    Zasada włączeń i wyłączeń - reguła kombinatoryczna, pozwalająca na określenie liczby elementów skończonej sumy mnogościowej skończonych zbiorów. Autorstwo zasady przypisywane jest zazwyczaj Abrahamowi de Moivre, chociaż bywa nazywana od nazwisk matematyków, Jamesa Josepha Sylvestera oraz Henriego Poincaré.

    Reklama

    Czas generowania strony: 0.019 sek.