Struktura matematyczna – pojęcie fundamentalne dla matematyki, definiowane jednak w rozmaity sposób, zależnie od teorii i kontekstu. Najczęściej mówi się o strukturze na danym zbiorze X, który zwany jest nośnikiem lub podkładem tej struktury. Rozpatruje się też struktury matematyczne w ramach teorii modeli.
Algebra ogólna – obiekt matematyczny będący przedmiotem badań algebry uniwersalnej. Czasami algebra uniwersalna nazywana jest algebrą ogólną, wówczas rozważane w niej obiekty nazywa się zwykle algebrami abstrakcyjnymi lub po prostu algebrami.Algebra nad ciałem a. algebra liniowa – w algebrze liniowej przestrzeń liniowa wyposażona w dwuliniowe (wewnętrzne) działanie dwuargumentowe, nazywane mnożeniem (wektorów), które czyni z niej pierścień (niekoniecznie łączny).
Wyróżnia się trzy główne typy struktur matematycznych.
Struktury algebraiczne, zawierające tylko symbole funkcji i stałych (bez relacji innych niż funkcje), rozpatrywane też w ramach algebry uniwersalnej. Struktury takie zwykle rozumie się jako abstrakcyjne działania na danym zbiorze. Można to objaśnić na przykładzie struktury grupy na zbiorze G. Tutaj strukturą jest działanie grupowe
G
×
G
→
G
,
{\displaystyle G\times G\to G,}
interpretowane jako podzbiór zbioru
(
G
×
G
)
×
G
,
{\displaystyle (G\times G)\times G,}
spełniające aksjomaty grupy. Zbiór G jest nośnikiem tej struktury, ale sam ten zbiór nie jest grupą; grupą jest ten zbiór wraz z działaniem grupowym. Można też jako strukturę grupy na zbiorze G przyjąć uporządkowaną trójkę: dwuargumentowe działanie grupowe, jednoargumentowe działanie
G
→
G
{\displaystyle G\to G}
brania elementu odwrotnego
x
→
x
−
1
{\displaystyle x\to x^{-1}}
oraz element neutralny e, traktowany jako działanie zeroargumentowe, czyli jako funkcja stała
{
∅
}
→
G
{\displaystyle \{\emptyset \}\to G}
ze zbioru jednoelementowego
{
∅
}
,
{\displaystyle \{\emptyset \},}
przyporządkowująca jedynemu elementowi
∅
{\displaystyle \emptyset }
element e. Ważną klasę struktur algebraicznych stanowią te, które są zdefiniowane równościowo, tzn. za pomocą skończonej lub nieskończonej liczby aksjomatów mających postać równości, bez kwantyfikatora szczegółowego
∃
{\displaystyle \exists }
. Strukturami algebraicznymi równościowo definiowalnymi są m.in.: struktura grupy (bierze się wtedy nie jedno działanie, lecz wymienione wyżej trzy, a aksjomaty zapisuje się w postaci równości), struktura grupy abelowej, struktura ciała, struktura pierścienia, struktura kraty.
Struktury porządkowe, tworzone przez relacje uporządkowania, takie jak częściowy porządek. Jeśli
(
X
,
⩽
)
{\displaystyle (X,\leqslant )}
jest zbiorem częściowo uporządkowanym, to relacja
⩽
{\displaystyle \leqslant }
(jako podzbiór zbioru
X
×
X
{\displaystyle X\times X}
) jest strukturą, a X jest nośnikiem tej struktury. Struktura kraty może być również uważana za strukturę porządkową
(
X
,
⩽
)
,
{\displaystyle (X,\leqslant ),}
w której każda para x,y ma kres dolny inf(x,y) i kres górny sup(x,y).
Struktury topologiczne, których typowym przykładem jest przestrzeń topologiczna, tzn. zbiór X, na których strukturą jest topologia określona jako rodzina zbiorów otwartych w X. Do struktur topologicznych należy też struktura przestrzeni jednostajnej.
Struktury mieszane. Są one dwojakiego rodzaju. 1) Struktury będące połączeniem co najmniej dwóch z powyższych rodzajów struktur, np. grupa topologiczna, ciało uporządkowane. Istotne tu jest to, że wszystkie elementy danej struktury na zbiorze X są utworzone z elementów tego zbioru (a także z jego podzbiorów itd.) z użyciem skończonej lub nieskończonej liczby konstrukcji w języku teorii mnogości. 2) Struktury, w których występują elementy nie dające się utworzyć w taki sposób, tzn. elementy spoza uniwersum generowanego przez X. Przykładami są tu: struktura przestrzeni metrycznej na X, w której pojawia się zbiór liczb rzeczywistych
R
,
{\displaystyle \mathbb {R} ,}
struktura przestrzeni liniowej nad ciałem
C
,
{\displaystyle \mathbb {C} ,}
struktura przestrzeni liniowo-topologicznej, struktura modułu nad pierścieniem R, struktura algebry nad ciałem K.
Rygorystyczną definicję struktury, rodzaju struktury i izomorfizmu struktur podał Bourbaki. Definicja ta jednak, zawiła i długa (łącznie kilka stron), okazała się nieprzydatna i sam Bourbaki nie korzysta z niej później w dalszej części swego dzieła. Stosując tę definicję, nie można np. w ogólny sposób rozstrzygnąć, czy dwie różne definicje dają tę samą w istocie strukturę, np. czy definicja topologii na zbiorze X jako rodziny zbiorów otwartych spełniających zwykłe aksjomaty daje w istocie tę samą strukturę co operacja domknięcia Kuratowskiego (równoważności tej dowodzi się w kursie topologii, ale nie widać, jak miałaby to wynikać z analizy samego typu definicji tych struktur).
Przestrzeń liniowa lub wektorowa – w matematyce zbiór obiektów (nazywanych "wektorami"), które mogą być, nieformalnie rzecz ujmując, skalowane i dodawane. Formalnie jest to zbiór z określonymi dwoma działaniami: dodawaniem elementów tej przestrzeni (wektorów) i mnożeniem przez elementy ustalonego ciała, które związane są ze sobą poniższymi aksjomatami. Przestrzenie liniowe to podstawowy obiekt badań algebry liniowej i analizy funkcjonalnej. Znajdują zastosowanie niemal we wszystkich gałęziach matematyki, naukach ścisłych i inżynierii.Ciało uporządkowane – ciało K, w którym wyróżniony jest zbiór D elementów dodatnich o następujących własnościach:
- Rozpatruje się też działania n-arne
G
n
→
G
{\displaystyle G^{n}\to G}
i nieskończone zbiory takich działań na G, np. zbiór wszystkich możliwych złożeń powyższych trzech działań na grupie.
- Poglądowe omówienie definicji Bourbakiego daje Z. Semadeni, Struktury w sensie Bourbakiego i kategorie, „Roczniki Polskiego Towarzystwa Matematycznego, seria I. Prace Matematyczne” 10, s. 37–50, 1966.
- Andrzej Białynicki-Birula: Zarys algebry. Warszawa: Państwowe Wydawnictwo Naukowe, 1987, seria: Biblioteka Matematyczna. Tom 63. ISBN 83-01-06260-6., rozdz. I, § 5.
- Algebrom tym poświęcone są: rozdz. XIV, § 7 w książce: H. Rasiowa, Wstęp do matematyki współczesnej, Warszawa, Państwowe Wydawnictwo Naukowe, 1968; oraz § 5.5 w książce: Zbigniew Semadeni, Antoni Wiweger: Wstęp do teorii kategorii i funktorów. Wyd. 2. Warszawa: Państwowe Wydawnictwo Naukowe, 1978, seria: Biblioteka Matematyczna. Tom 45.
- Ryszard Engelking: Topologia Ogólna. Warszawa: Państwowe Wydawnictwo Naukowe, 1975., rozdział VIII.
- N. Bourbaki, Éléments de mathématique, Livre I (Théorie des ensembles), Chapitre 4 (Structures), Act. Sci. Ind. 1258, Paris 1957 (są też przekłady: angielski i rosyjski).
Z. Semadeni, Struktury w sensie Bourbakiego i kategorie, „Roczniki Polskiego Towarzystwa Matematycznego, seria I. Prace Matematyczne” 10, s. 37–50, 1966.
P. van Hiele, Structure and Insight, Orlando et al, Academic Press, 1986. ISBN 0-12-714161-8.

Ryszard Engelking, prof. (ur. 1935 w Sosnowcu) – polski matematyk specjalizujący się w topologii, szczególnie w teorii wymiaru. Autor wielu książek i publikacji z tego zakresu, w tym Topologii ogólnej (przetłumaczonej na angielski), która jest klasyczną pozycją literatury przedmiotu. Ponadto tłumacz literatury francuskiej.Teoria mnogości lub inaczej: teoria zbiorów – dział matematyki, a zarazem logiki matematycznej zapoczątkowany przez niemieckiego matematyka Georga Cantora pod koniec XIX wieku. Teoria początkowo wzbudzała wiele kontrowersji, jednak wraz z postępem matematyki zaczęła ona pełnić rolę fundamentu, na którym opiera się większość matematycznych rozważań.
Warto wiedzieć że... beta
Kraty (ang. lattice) są strukturami matematycznymi, które można opisywać albo algebraicznie, albo w sensie częściowych porządków:
Działanie lub operacja – w matematyce i logice przyporządkowanie jednemu lub większej liczbie elementów nazywanych argumentami lub operandami elementu nazywanego wynikiem. Badaniem działań w ogólności zajmuje się dział nazywany algebrą uniwersalną, zbiory z choć jednym określonym na nim działaniem algebraicznym nazywa się algebrami ogólnymi (często krótko: algebrami), samą rodzinę działań określa się nazwą „sygnatura”.
Moduł – struktura algebraiczna będąca uogólnieniem przestrzeni liniowej. Ponieważ grupy abelowe można postrzegać jako moduły nad pierścieniem liczb całkowitych, to teoria modułów znajduje zastosowanie w wielu działach algebry i innych dziedzinach matematyki.
Algebra uniwersalna – dział matematyki zajmujący się badaniem ogólnych struktur algebraicznych, nazywany również w niektórych publikacjach algebrą ogólną. Algebra uniwersalna wraz z teorią kategorii stanowią matematyczne podstawy teorii specyfikacji algebraicznych. Podstawowym pojęciem algebry uniwersalnej jest pojęcie algebry (nazywanej często algebrą uniwersalną; wtedy cały dział nazywa się algebrą ogólną), zbioru A wyposażonego w pewien zbiór
Ω
{displaystyle Omega }
operacji n-arnych nazywany sygnaturą. Każda struktura algebraiczna (grupoid, półgrupa, grupa, pierścień, ciało itd.) jest pewną algebrą.
Pierścień – struktura formalizująca własności algebraiczne liczb całkowitych oraz arytmetyki modularnej; intuicyjnie zbiór, którego elementy mogą być bez przeszkód dodawane, odejmowane i mnożone, lecz niekoniecznie dzielone. Badanie pierścieni umożliwiło uogólnienie innych pojęć matematycznych takich, jak np. liczby pierwsze (przez ideały pierwsze), wielomiany, ułamki oraz rozwinięcie teorii podzielności i wskazania przy tym najogólniejszej struktury, w której możliwe jest stosowanie algorytmu Euklidesa (tzw. pierścień Euklidesa). Dział matematyki opisujący te struktury nazywa się teorią pierścieni.
Przestrzeń liniowo-topologiczna – przestrzeń liniowa, w której istnieje taka topologia (dla której dodatkowo zakłada się, że każdy punkt tej przestrzeni jest zbiorem domkniętym, innymi słowy przestrzeń spełnia pierwszy aksjomat oddzielania), że działania dodawania wektorów i mnożenia przez skalar są ciągłe. Można udowodnić, że każda przestrzeń liniowo-topologiczna jest przestrzenią Hausdorffa, a nawet jest przestrzenią regularną. Grupa addytywna przestrzeni liniowo-topologicznej jest grupą topologiczną. Każda przestrzeń unormowana (a więc np. dowolna przestrzeń Banacha czy Hilberta) jest przestrzenią liniowo-topologiczną.
Działanie zeroargumentowe (element wyróżniony) – w algebrze pojęcie służące do zapisu stałej jako działania algebraicznego. Ma ono swoje zastosowanie prawie wyłącznie jako element opisu pewnej algebry ogólnej: krotki zawierającej jako pierwszy element swój nośnik (zbiór elementów), a następnie działania.