• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Statystyka matematyczna

    Przeczytaj także...
    Rozkład normalny, zwany też rozkładem Gaussa – jeden z najważniejszych rozkładów prawdopodobieństwa. Odgrywa ważną rolę w statystycznym opisie zagadnień przyrodniczych, przemysłowych, medycznych, społecznych itp. Wykres funkcji prawdopodobieństwa tego rozkładu jest krzywą dzwonową.Przedział ufności jest podstawowym narzędziem estymacji przedziałowej. Pojęcie to zostało wprowadzone do statystyki przez polsko-amerykańskiego matematyka Jerzego Spławę-Neymana.
    Rozkład prawdopodobieństwa – w najczęstszej interpretacji (rozkład zmiennej losowej) miara probabilistyczna określona na sigma-ciele podzbiorów zbioru wartości zmiennej losowej (wektora losowego), pozwalająca przypisywać prawdopodobieństwa zbiorom wartości tej zmiennej, odpowiadającym zdarzeniom losowym. Formalnie rozkład prawdopodobieństwa może być jednak rozpatrywany także bez stosowania zmiennych losowych.

    Statystyka matematyczna - dział statystyki, używający teorii prawdopodobieństwa i innych działów matematyki do rozwijania statystyki z czysto matematycznego punktu widzenia. Zajmuje się metodami wnioskowania statystycznego, które polegają na tym, że na podstawie wyników uzyskanych z próby formułujemy wnioski o całej zbiorowości. Wnioskowanie statystyczne obejmuje estymacje i weryfikację hipotez statystycznych.

    Statystyka (niem. Statistik, „badanie faktów i osób publicznych”, z łac. [now.] statisticus, „polityczny, dot. polityki”, od status, „państwo, stan”) – nauka, której przedmiotem zainteresowania są metody pozyskiwania i prezentacji, a przede wszystkim analizy danych opisujących zjawiska, w tym masowe.Dobór losowy – w statystyce taki dobór elementów z populacji do próby statystycznej, w którym wszystkie elementy populacji (przedmiotów, regionów, ludzi, itp.) mają znane szanse (znane prawdopodobieństwo) dostania się do próby.

    I tak na przykład próba losowa jest rozpatrywana jako ciąg zmiennych losowych,

    każda z określonym rozkładem prawdopodobieństwa (zazwyczaj przyjmuje się, że są to zmienne losowe niezależne i o identycznym rozkładzie). Średnia z próby jest wyrażana jako funkcja tych zmiennych:

    Nierówność Czebyszewa podaje górne ograniczenie prawdopodobieństwa zdarzenia, że wartość nieujemnej zmiennej losowej jest większa lub równa od z góry ustalonej dodatniej liczby.Teoria prawdopodobieństwa (także rachunek prawdopodobieństwa lub probabilistyka) – dział matematyki zajmujący się zdarzeniami losowymi. Rachunek prawdopodobieństwa zajmuje się badaniem abstrakcyjnych pojęć matematycznych stworzonych do opisu zjawisk, które nie są deterministyczne: zmiennych losowych w przypadku pojedynczych zdarzeń oraz procesów stochastycznych w przypadku zdarzeń powtarzających się (w czasie). Jako matematyczny fundament statystyki, teoria prawdopodobieństwa odgrywa istotną rolę w sytuacjach, w których konieczna jest analiza dużych zbiorów danych. Jednym z największych osiągnięć fizyki dwudziestego wieku było odkrycie probabilistycznej natury zjawisk fizycznych w skali mikroskopijnej, co zaowocowało powstaniem mechaniki kwantowej.

    W ten sposób statystyka matematyczna zapewnia teoretyczne podstawy dla metod używanych w statystyce stosowanej.

    Twierdzenie Cochrana – twierdzenie matematyczne wykorzystywane w analizie wariancji. Jest ono twierdzeniem odwrotnym do twierdzenia Fishera.Centralne twierdzenie graniczne – jedno z najważniejszych twierdzeń rachunku prawdopodobieństwa, uzasadniające powszechne występowanie w przyrodzie rozkładów zbliżonych do rozkładu normalnego.

    Przykładowe pojęcia i twierdzenia statystyki matematycznej:

  • zmienna losowa
  • zmienna losowa ciągła
  • zmienna losowa skokowa
  • rozkład zmiennej losowej
  • rozkład normalny
  • rozkład brzegowy
  • estymator
  • przedział ufności
  • centralne twierdzenie graniczne
  • prawo wielkich liczb
  • twierdzenie Cochrana
  • twierdzenie Rao-Blackwella
  • nierówność Czebyszewa
  • Zobacz też[]

  • statystyka,
  • statystyka stosowana,
  • statystyka bayesowska
  • przegląd zagadnień z zakresu statystyki
  • Prawdopodobieństwo subiektywne to interpretacja prawdopodobieństwa, według której prawdopodobieństwo nie musi być wielkością obiektywną, lecz może być określone na podstawie subiektywnej opinii osoby, zależnie od dostępnych jej aktualnie danych.Zmienna losowa – funkcja przypisująca zdarzeniom elementarnym liczby. Intuicyjnie: odwzorowanie przenoszące badania prawdopodobieństwa z niewygodnej przestrzeni probabilistycznej do dobrze znanej przestrzeni euklidesowej. Zmienne losowe to funkcje mierzalne względem przestrzeni probabilistycznych.



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Statystyka stosowana to dział statystyki, do obszaru zainteresowań którego należą zastosowania statystyki w innych dziedzinach wiedzy.
    Funkcja (łac. functio, -onis, „odbywanie, wykonywanie, czynność”) – dla danych dwóch zbiorów X i Y przyporządkowanie każdemu elementowi zbioru X dokładnie jednego elementu zbioru Y. Oznacza się ją na ogół f, g, h itd.
    Dyskretny rozkład prawdopodobieństwa to w probabilistyce rozkład prawdopodobieństwa zmiennej losowej dający się opisać przez podanie wszystkich przyjmowanych przez nią wartości, wraz z prawdopodobieństwem przyjęcia każdej z nich. Funkcja przypisująca prawdopodobieństwo do konkretnej wartości zmiennej losowej jest nazywana funkcją rozkładu prawdopodobieństwa (probability mass function, pmf). Zachodzi:
    Prawa wielkich liczb - seria twierdzeń matematycznych (jedno z tzw. twierdzeń granicznych), opisujących związek między liczbą wykonywanych doświadczeń a faktycznym prawdopodobieństwem wystąpienia zdarzenia, którego te doświadczenia dotyczą. Najprostsza i historycznie najwcześniejsza postać prawa wielkich liczb to prawo Bernoulliego sformułowane przez szwajcarskiego matematyka Jakoba Bernoulliego w książce Ars Conjectandi (1713). Prawo Bernoulliego orzeka, że:
    Matematyka (z łac. mathematicus, od gr. μαθηματικός mathēmatikós, od μαθηματ-, μαθημα mathēmat-, mathēma, „nauka, lekcja, poznanie”, od μανθάνειν manthánein, „uczyć się, dowiedzieć”; prawd. spokr. z goc. mundon, „baczyć, uważać”) – nauka dostarczająca narzędzi do otrzymywania ścisłych wniosków z przyjętych założeń, zatem dotycząca prawidłowości rozumowania. Ponieważ ścisłe założenia mogą dotyczyć najróżniejszych dziedzin myśli ludzkiej, a muszą być czynione w naukach ścisłych, technice a nawet w naukach humanistycznych, zakres matematyki jest szeroki i stale się powiększa.
    Ciągły rozkład prawdopodobieństwa - rozkład prawdopodobieństwa dla którego dystrybuanta jest funkcją ciągłą. Stosowana jest też węższa definicja, przedstawiona poniżej w sekcji bezwzględna ciągłość.

    Reklama