• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Spin - fizyka



    Podstrony: [1] 2 [3] [4]
    Przeczytaj także...
    W mechanice kwantowej pęd jest opisywany przez obserwablę - operator pędu. Przejście od pędu do operatora pędu jest nazywane pierwszym kwantowaniem. Matematycznie, operator pędu jest nieograniczonym operatorem samosprzężonym na ośrodkowej przestrzeni Hilberta.Grawiton – hipotetyczna cząstka elementarna, która nie ma masy, ani ładunku elektrycznego i przenosi oddziaływanie grawitacyjne. Teoria grawitonu jest podstawą różnych kwantowych teorii grawitacji, będących wersją kwantowej teorii pola, ale nie Modelu Standardowego.
    Moment pędu w fizyce kwantowej[ | edytuj kod]

    Dzięki mechanice kwantowej odkryto, że cząstkom elementarnym trzeba przypisać oprócz zwykłego momentu pędu, znanego w fizyce klasycznej, również inny rodzaj momentu pędu, który jest związany z obrotem w abstrakcyjnej przestrzeni spinowej. Cząstki mające spin mogą więc być w spoczynku i nie obracać się, a jednak zawsze mają spin.

    Mechanika klasyczna – dział mechaniki w fizyce opisujący ruch ciał (kinematyka), wpływ oddziaływań na ruch ciał (dynamika) oraz badaniem równowagi ciał materialnych (statyka). Mechanika klasyczna oparta jest na prawach ruchu (zasadach dynamiki) sformułowanych przez Isaaca Newtona, dlatego też jest ona nazywana „mechaniką Newtona” (Principia). Mechanika klasyczna wyjaśnia poprawnie zachowanie się większości ciał w naszym otoczeniu.Macierz jednostkowa (identycznościowa, tożsamościowa) – macierz kwadratowa, której współczynniki są określone wzorami:

    Spin całkowity i połówkowy[ | edytuj kod]

    Spin jest opisywany liczbowo za pomocą kwantowych liczb spinowych. Mogą one przyjmować wartości z zakresu itd. Cząstki o liczbie spinowej z zakresu 0, 1, 2 itd. przyjęto nazywać cząstkami o spinie całkowitym lub bozonami. Cząstki o liczbie spinowej 1 2 itd. przyjęto nazywać cząstkami o spinie połówkowym lub fermionami. Termin „cząstka o spinie ” jest skrótem myślowym oznaczającym „cząstkę o liczbie spinowej ”.

    Operator jest to inna nazwa odwzorowania liniowego zdefiniowanego na przestrzeni Hilberta. Operatory samosprzężone odpowiadają wartościom fizycznym, które mogą być mierzone.Mechanika kwantowa (teoria kwantów) – teoria praw ruchu obiektów świata mikroskopowego. Poszerza zakres mechaniki na odległości czasoprzestrzenne i energie, dla których przewidywania mechaniki klasycznej nie sprawdzały się. Opisuje przede wszystkim obiekty o bardzo małych masach i rozmiarach - np. atom, cząstki elementarne itp. Jej granicą dla średnich rozmiarów lub średnich energii czy pędów jest mechanika klasyczna.
    Spin neutronu przedstawiony jako czarna strzałka oraz pole magnetyczne związane z momentem magnetycznym neutronu. Neutron ma ujemny moment magnetyczny. Gdy spin neutronu jest skierowany w górę, to linie pola magnetycznego w środku dipola są skierowane w dół

    Bozonami są np. bozony W i W, bozony Z i fotony. Fermionami są np. elektrony, protony, neutrony, neutrina i miony.

    Foton (gr. φως – światło, w dopełniaczu – φοτος, nazwa stworzona przez Gilberta N. Lewisa) jest cząstką elementarną, nie posiadającą ładunku elektrycznego ani momentu magnetycznego, o masie spoczynkowej równej zero (m0 = 0), liczbie spinowej s = 1 (fotony są zatem bozonami). Fotony są nośnikami oddziaływań elektromagnetycznych, a ponieważ wykazują dualizm korpuskularno-falowy, są równocześnie falą elektromagnetyczną.W fizyce cząstek bozony (ang. boson od nazwiska fizyka Satyendra Bose), są cząstkami posiadającymi spin całkowity. Większość bozonów to cząstki złożone, jednakże 12 z nich (tak zwane bozony cechowania) są cząstkami elementarnymi, niezłożonymi z mniejszych cząstek (cząstki fundamentalne).
    Ściany domen magnetycznych przesuwające się pod wpływem zewnętrznego pola magnetycznego – efekt kolektywnego oddziaływania spinów z polem

    Związek spinu ze statystyką[ | edytuj kod]

    W dużym zbiorze cząstek tego samego rodzaju wykazują one ciekawe własności statystyczne, wynikające z identyczności cząstek kwantowych. Własności te zależą od spinu.

    Wektory i wartości własne – wielkości opisujące endomorfizm danej przestrzeni liniowej; wektor własny przekształcenia można rozumieć jako wektor, którego kierunek nie ulega zmianie po przekształceniu go endomorfizmem; wartość własna odpowiadająca temu wektorowi to skala podobieństwa tych wektorów.Pojęcie liczby kwantowej pojawiło się w fizyce wraz z odkryciem mechaniki kwantowej. Okazało się, że właściwie wszystkie wielkości fizyczne mierzone w mikroświecie atomów i cząsteczek podlegają zjawisku kwantowania, tzn. mogą przyjmować tylko pewne ściśle określone wartości. Na przykład elektrony w atomie znajdują się na ściśle określonych orbitach i mogą znajdować się tylko tam, z dokładnością określoną przez zasadę nieoznaczoności. Z drugiej strony każdej orbicie odpowiada pewna energia. Bliższe badania pokazały, że w podobny sposób zachowują się także inne wielkości np. pęd, moment pędu czy moment magnetyczny (kwantowaniu podlega tu nie tylko wartość, ale i położenie wektora w przestrzeni albo jego rzutu na wybraną oś). Wobec takiego stanu rzeczy naturalnym pomysłem było po prostu ponumerowanie wszystkich możliwych wartości np. energii czy momentu pędu. Te numery to właśnie liczby kwantowe.

    Np. gaz złożony z bozonów tego samego rodzaju (np. fotony promieniowania we wnęce pieca) podlega statystyce Bosego-Einsteina. Cząsteczki gazu złożonego z fermionów podlegają statystyce Fermiego-Diraca. Związek ten jest szczególnym przypadkiem ogólnego związku spinu ze statystyką.

    W ciele stałym lub cieczy (tj. w fazie skondensowanej) oddziaływanie spinów może prowadzić do zjawiska ferromagnetyzmu. Jest tak dlatego, że cząsteczki mające spin mają jednocześnie różny od zera moment magnetyczny, co oznacza że wytwarzają wokół siebie słabe pole magnetyczne, za pomocą którego oddziałują ze sobą.

    Operator Hamiltona (hamiltonian, operator energii) – w mechanice kwantowej odpowiednik funkcji Hamiltona zwanej hamiltonianem. Jest to operator działający nad przestrzenią funkcji falowych stanów układu fizycznego (lub nad przestrzenią Hilberta wektorów stanu). Wartością własną operatora Hamiltona jest energia cząstki opisywanej daną funkcją własną, natomiast wartością średnią operatora Hamiltona jest energia cząstki w danym stanie kwantowym. Matematycznie, operator Hamiltona jest obserwablą, a więc jest operatorem samosprzężonym.Symbol Leviego-Civity (symbol zupełnie antysymetryczny) jest antysymetrycznym symbolem podobnym do delty Kroneckera, który jest zdefiniowany jako:

    Spin fotonu[ | edytuj kod]

    Foton jest kwantem energii fali elektromagnetycznej. Z optyki klasycznej wynika, że fale te wykazują zjawisko polaryzacji. W opisie mechaniki kwantowej polaryzacja jest wynikiem spinu fotonu. Wartość liczby spinowej dla fotonu wynosi Rzut wektora spinu fotonu na kierunek jego propagacji jest równy zeru. Oznacza to, że wektor ten leży w płaszczyźnie prostopadłej do wektora falowego propagacji fali elektromagnetycznej. Taka własność spinu tłumaczy, dlaczego fale elektromagnetyczne są falami poprzecznymi.

    Statystyka Fermiego-Diraca – statystyka dotycząca fermionów, cząstek o spinie połówkowym, które obowiązuje zakaz Pauliego. Zgodnie z zakazem Pauliego w danym stanie kwantowym nie może znajdować się więcej niż jeden fermion. Statystyka Fermiego-Diraca oparta jest również na założeniu nierozróżnialności cząstek.W fizyce i matematyce grupa Poincarégo jest to grupa izometrii czasoprzestrzeni Minkowskiego. Jest to 10-wymiarowa grupa Liego nazwana na cześć jednego z twórców matematycznych podstaw teorii względności. Abelowa grupa translacji w czasoprzestrzeni jest podgrupą normalną, podczas gdy grupa Lorentza jest podgrupą, czyli pełna grupa Poincaré jest iloczynem półprostym translacji i transformacji Lorentza. Innym sposobem wyprowadzenia grupy Poincaré jest rozszerzenie grupy Lorentza za pomocą jej reprezentacji wektorowej. Zgodnie z programem z Erlangen, geometria czasoprzestrzeni Minkowskiego jest zdefiniowana przez grupę Poincarégo. Wedle tego programu przestrzeń Minkowskiego jest przestrzenią jednorodną dla grupy Poincarégo.

    Opis matematyczny spinu ½[ | edytuj kod]

    Doświadczenie Sterna-Gerlacha pokazało, że pewne cząstki (np. elektrony) w polu magnetycznym przyjmują tylko dwa stany – zgodnie z polem lub przeciwnie do niego. Wynik ten jest sprzeczny z mechaniką klasyczną

    Matematycznie spin jest wielkością tensorową wprowadzoną przez mechanikę kwantową. Istnienie spinu wynika z symetrii funkcji falowej danej cząstki względem grupy obrotów. Np. funkcja falowa pionów jest skalarem (ma tylko jedną składową), funkcja falowa elektronów jest spinorem o rzędzie (zapisuje się ją w postaci wektora o dwóch składowych), zaś funkcja falowa hipotetycznych grawitonów jest tensorem drugiego rzędu (zapisuje się go w postaci macierzy 3×3, ma 9 składowych).

    Proton, p (z gr. πρῶτον – "pierwsze") − trwała cząstka subatomowa z grupy barionów o ładunku +1 i masie spoczynkowej równej ok. 1 u.Statystyka Bosego-Einsteina – statystyka dotycząca bozonów traktowanych jako gaz bozonowy, cząstek o spinie całkowitym, których nie obowiązuje zakaz Pauliego. Zgodnie z rozkładem Bosego-Einsteina średnia liczba cząstek w danym stanie kwantowym jest równa

    Poniżej omówiony jest przypadek spinu

    Doświadczalny dowód kwantowania spinu[ | edytuj kod]

    Z doświadczeń (analogicznych do doświadczenia Sterna-Gerlacha) wykonanych dla elektronu, protonu czy neutronu otrzymuje się zawsze dwa możliwe stany spinowe – zgodne ze zwrotem pola magnetycznego (stan „w górę”) lub przeciwnie (stan „w dół”) (zobacz rysunek obok). Wynik ten jest zawsze taki sam, niezależnie od ustawienia kierunku pola magnetycznego. Według przewidywań klasycznej fizyki w doświadczeniu tego typu powinno się otrzymać na wyjściu z urządzenia pomiarowego rozmytą w miarę jednorodnie plamę, odpowiadającą continuum możliwych ustawień wektora spinu względem pola magnetycznego.

    Linia wodoru 21 cm – linia emisyjna promieniowania elektromagnetycznego o długości fali równiej 21 cm (fale decymetrowe), wysyłanego przez atomy wodoru.Miony to nietrwałe cząstki elementarne należące do kategorii leptonów. Występują w dwóch stanach ładunkowych (będących wzajemnie antycząstkami) μ i μ. Masa mionu wynosi 105,66 MeV/c², gdzie c - prędkość światła w próżni, okres połowicznego zaniku jest równy 1,5 mikrosekundy (średni czas życia τ=2,2×10 s). Rozpadają się najczęściej na elektron, antyneutrino elektronowe oraz neutrino mionowe (µ odpowiednio na pozyton, neutrino elektronowe i antyneutrino mionowe). Należą do drugiej generacji cząstek elementarnych i wykazują pokrewieństwo z elektronem, tzn. posiadają takie same własności co elektron, z wyjątkiem około 207 razy większej masy.

    Operatory pomiaru spinu w kierunkach x, y, z[ | edytuj kod]

    Aby uzasadnić teoretycznie powyżej omówione wyniki eksperymentu Pauli wprowadził operatory spinu odpowiadające pomiarom spinu wzdłuż osi wybranego układu współrzędnych

    Zasada nieoznaczoności (zasada nieoznaczoności Heisenberga lub zasada nieokreśloności) − reguła, która mówi, że istnieją takie pary wielkości, których nie da się jednocześnie zmierzyć z dowolną dokładnością. O wielkościach takich mówi się, że nie komutują. Akt pomiaru jednej wielkości wpływa na układ tak, że część informacji o drugiej wielkości jest tracona. Zasada nieoznaczoności nie wynika z niedoskonałości metod ani instrumentów pomiaru, lecz z samej natury rzeczywistości.Ferromagnetyzm – zjawisko, w którym materia wykazuje własne, spontaniczne namagnesowanie. Jest jedną z najsilniejszych postaci magnetyzmu i jest odpowiedzialny za większość magnetycznych zachowań spotykanych w życiu codziennym. Razem z ferrimagnetyzmem jest podstawą istnienia wszystkich magnesów trwałych (jak i zauważalnego przyciągania innych ferromagnetycznych metali przez magnesy trwałe).

    gdzie macierzami Pauliego, czyli:

    Cząstka – bardzo mała ilość (pyłek, okruch) lub stosunkowo niewielka część większej całości (Galaktyka jest cząstką kosmosu). W naukach przyrodniczych (fizyka, chemia) cząstka oznacza mały fragment materii (np. cząstka kurzu), który ma zwarty kształt, w odróżnieniu od nici czy włókna.Optyka to dział fizyki, zajmujący się badaniem natury światła, prawami opisującymi jego emisję, rozchodzenie się, oddziaływanie z materią oraz pochłanianie przez materię. Optyka wypracowała specyficzne metody pierwotnie przeznaczone do badania światła widzialnego, stosowane obecnie także do badania rozchodzenia się innych zakresów promieniowania elektromagnetycznego - podczerwieni i ultrafioletu - zwane światłem niewidzialnym.

    Zgodnie z formalizmem matematycznym mechaniki kwantowej możliwe wyniki pomiaru oblicza się jako wartości własne operatora, odpowiadającego danemu pomiarowi, działającego na funkcję falową mierzonego układu.

    Obserwabla – w mechanice kwantowej wielkości fizyczne są reprezentowane przez operatory hermitowskie zwane obserwablami. Aby dany operator był obserwablą, jego wektory własne muszą tworzyć bazę przestrzeni Hilberta. Wartości własne operatora hermitowskiego są rzeczywiste. Podczas pomiaru danej wielkości fizycznej otrzymuje się jako wynik jedną z wartości własnych obserwabli przyporządkowanej danej wielkości fizycznej.Bozon Z (zeton) – cząstka elementarna pośrednicząca w oddziaływaniach słabych, wymieniana przez np. elektrony czy neutrina i inne cząstki oddziałujące poprzez oddziaływanie słabe podczas zderzeń. Jest obojętny elektrycznie, jako bozon podlega statystyce Bosego-Einsteina. Jego istnienie przewidziała teoria oddziaływań słabych. Bozon Z jest równocześnie swoją antycząstką. Okres półtrwania wynosi 3,20×10 sekundy.

    W przypadku pomiaru spinu wynik pomiaru wzdłuż osi jest jedną z możliwych wartości własnych, obliczoną z działania operatora na spinową funkcję falową (jest to tzw. równanie na wartości własne operatora spinu)

    Neutron (z łac. neuter – "obojętny") – cząstka subatomowa występująca w jądrach atomowych. Jest obojętny elektrycznie. Posiada spin ½.Bozon W (wuon) – cząstka elementarna pośrednicząca w oddziaływaniach słabych, wymieniana przez elektrony, neutrina i inne cząstki oddziałujące oddziaływaniem słabym podczas zderzeń. Cząstka ta występuje w dwóch podstawowych postaciach: cząstki W i jej antycząstki W. Obie mają ten sam spin (równy 1) oraz masę, różnią się tylko ładunkiem elektrycznym.

    gdzie – szukana wartość rzutu spinu na oś

    W mechanice kwantowej położenie jest opisywane przez obserwablę - operator położenia. Przejście od położenia do operatora położenia jest nazywane pierwszym kwantowaniem.Doświadczenie Sterna-Gerlacha – eksperyment przeprowadzony w początku XX wieku, będący dowodem na istnienie kwantowania momentu pędu.
    Wektor spinu leży na jednym z dwóch stożków, takich że rzuty spinu na kierunek pola magnetycznego mają ściśle określone wartości. Tu pokazano sytuację dla pola

    Równanie to ma dwa rozwiązania oraz co oznacza, że rzut wektora spinu na oś może przyjmować tylko dwie wartości – w górę osi oraz w dół osi Ustawienia wektora spinu odpowiadające powyższym rzutom nazywa się w skrócie stanami „w dół” oraz „w górę”, mimo że sam wektor spinu nigdy nie ma ustalonego kierunku, lecz leży na stożku (patrz rysunek obok).

    Kwant – najmniejsza porcja, jaką może mieć lub o jaką może zmienić się dana wielkość fizyczna w pojedynczym zdarzeniu; np. kwant energii, kwant momentu pędu, kwant strumienia magnetycznego, kwant czasu.Pseudowektor (wektor osiowy) – wielkość fizyczna, która przy ciągłych transformacjach układu odniesienia (takich jak translacja lub obrót) przekształca się jak wektor, natomiast przy odbiciu zwierciadlanym i symetrii środkowej transformuje się odmiennie (np. zmienia zwrot wektora).

    Identyczne wyniki pomiaru spinu uzyska się dla operatorów , odpowiadających pomiarom wzdłuż osi oraz Wartość bezwzględna współczynnika stojąca przy wartości wynosi Dlatego cząstki mające własność, że w oddziaływaniu z polem magnetycznym zachowują się jak wyżej opisano, są określane jako cząstki o spinie Liczba nosi nazwę spinowej liczby kwantowej.

    Spinor to obiekt geometryczny o specyficznych własnościach transformacyjnych. Spinory transformują się względem reprezentacji spinorowej (ułamkowej) grupy przekształceń.Jądro atomowe – konglomerat cząstek elementarnych będący centralną częścią atomu zbudowany z jednego lub więcej protonów i neutronów, zwanych nukleonami. Jądro stanowi niewielką część objętości całego atomu, jednak to w jądrze skupiona jest prawie cała masa. Przemiany jądrowe mogą prowadzić do wyzwolenia ogromnych ilości energii. Niewłaściwe ich wykorzystanie może stanowić zagrożenie.

    Operatory spełniają reguły komutacyjne (analogicznie jak operatory momentu pędu mierzące składowe momentu pędu w przestrzeni fizycznej lub generatory grupy obrotów)

    Ruch obrotowy bryły sztywnej to taki ruch, w którym wszystkie punkty bryły poruszają się po okręgach o środkach leżących na jednej prostej zwanej osią obrotu. Np. ruch Ziemi wokół własnej osi. Jest to ruch złożony z ruchu postępowego środka masy danego ciała oraz ruchu obrotowego względem pewnej osi. Środek masy ciała można uważać za punkt materialny. Do opisania ruchu obrotowego używa się odmiennych pojęć od używanych do opisania ruchu postępowego.Teoria kwantowa - a właściwie kwantowe teorie to teorie szczegółowe modele fizyczne, które za swą podstawę teoretyczną przyjmują mechanikę kwantową. Często nazwa teoria kwantowa jest używana jako synonim mechaniki kwantowej.

    Operatory te nie komutują ze sobą (tzn. komutatory są ), co oznacza, że jest możliwe jednoczesne określenie jedynie jednej z tych składowych. Wynik ten jest zgodny z tym, co obserwuje się w doświadczeniach.

    Macierze obrotu w przestrzeni n-wymiarowej tworzą grupę O(n), jeżeli spełniają warunek zachowania długości wektora przy obrotachDomeny magnetyczne – spontaniczne namagnesowane obszary w ferromagnetykach lub ferrimagnetykach, w których występuje uporządkowanie momentów magnetycznych. Każda z domen jest namagnesowana do nasycenia magnetycznego. Sąsiednie domeny są rozdzielone ściankami domenowymi, w których następuje zmiana orientacji momentów. Domeny zanikają powyżej temperatury Curie, ponieważ materiał traci wówczas własności ferromagnetyczne.

    Wektorowy operator spinu[ | edytuj kod]

    Operator postaci

    jest wektorowym operatorem spinu; jego współrzędnymi są operatory pomiaru spinu w kierunkach operator ten można zapisać w postaci

    Magnetyczny moment dipolowy μ → {displaystyle {vec {mu }}} (lub p m {displaystyle {mathbf {p} }_{ extrm {m}}} ) – pseudowektorowa wielkość fizyczna cechująca dipol magnetyczny, która określa wartość i kierunek ustawienia dipola magnetycznego w przestrzeni; wielkość ta pozwala np. opisać oddziaływanie dipola z zewnętrznym polem magnetycznym. W przypadku np. magnesu sztabkowego wektor μ → {displaystyle {vec {mu }}} ma zwrot od bieguna S do N tego magnesu. Sens fizyczny takiego wyboru zwrotu momentu magnetycznego objaśniono w rozdziale #Dipol magnetyczny w polu magnetycznym.Orbitalny moment pędu światła (ang. orbital angular momentum of light, czyli OAM) jest składnikiem momentu pędu promienia świetlnego, który zależy od przestrzennej dystrybucji pola, ale nie od polaryzacji. Można go dalej podzielić na wewnętrzny i zewnętrzny OAM. Wewnętrzny OAM jest niezależnym od pochodzenia momentem pędu promienia świetlnego, który można skojarzyć z helikalnym albo skręconym czołem fali. Zewnętrzny OAM jest zależnym od pochodzenia momentem pędu, który można otrzymać jako iloczyn wektorowy położenia promienia świetlnego (środek promienia) i jego całkowitego pędu liniowego.

    gdzie:

    Mezon π (pion) – najlżejszy mezon, o zerowym spinie. Występuje w trzech odmianach π, π i π, które razem z cząstkami K, η tworzą nonet.Macierz – w matematyce układ liczb, symboli lub wyrażeń zapisanych w postaci prostokątnej tablicy. Choć słowo „macierz” oznacza najczęściej macierz dwuwskaźnikową, to możliwe jest rozpatrywanie macierzy wielowskaźnikowych (zob. notacja wielowskaźnikowa). Macierze jednowskaźnikowe nazywa się często wektorami wierszowymi lub kolumnowymi, co wynika z zastosowań macierzy w algebrze liniowej. W informatyce macierze modeluje się zwykle za pomocą (najczęściej dwuwymiarowych) tablic.
    jest wektorem złożonym z macierzy Pauliego.

    Operator pomiaru spinu wzdłuż dowolnego kierunku[ | edytuj kod]

    Pauli zdefiniował też operator pomiaru spinu wzdłuż dowolnego kierunku, związanego z dowolnym ustawieniem wektora indukcji pola magnetycznego Niech oznacza wektor jednostkowy zgodny z wektorem Wtedy operator pomiaru spinu ma postać:

    Związek spinu ze statystyką – grupa obrotów posiada w przestrzeni trójwymiarowej dwa rodzaje reprezentacji: reprezentacje proste oraz reprezentacje nakrywające. Jeżeli funkcja falowa cząstki transformuje się podczas obrotów zgodnie z regułami reprezentacji prostych, to jest ona bozonem. Bozony mają spin o wartościach całkowitych. Drugą grupę stanowią cząstki, których funkcja falowa transformuje się zgodnie z regułami reprezentacji nakrywającej; nazywamy je fermionami, zaś ich spin przyjmuje wartości będące liczbami ułamkowymi (1/2, 3/2 itp). Dla innych wymiarów przestrzeni (np. w dwóch wymiarach) możliwe są także reprezentacje grupy obrotów o bardziej skomplikowanych własnościach, i tym samym podział na bozony i fermiony może nie być właściwy.Macierzami Pauliego nazywamy zbiór zespolonych macierzy hermitowskich wymiaru 2×2 wprowadzonych przez Wolfganga Pauliego w związku z pojęciem spinu w mechanice kwantowej dlatego można się spotkać też z nazwami "Spinowe macierze Pauliego" lub "Macierze spinowe Pauliego".

    Jeżeli zapisze się wektor za pomocą współrzędnych sferycznych to operator ten przyjmie postać macierzy

    Wolfgang Pauli (ur. 25 kwietnia 1900 w Wiedniu, zm. 15 grudnia 1958 w Zurychu) – szwajcarski fizyk austriackiego pochodzenia, od 1928 profesor w Związkowej Wyższej Szkole Technicznej w Zurychu, po 1939 pracujący na Uniwersytecie Princeton w USA, jeden z twórców mechaniki kwantowej.Pole magnetyczne – stan przestrzeni, w której siły działają na poruszające się ładunki elektryczne, a także na ciała mające moment magnetyczny niezależnie od ich ruchu. Pole magnetyczne, obok pola elektrycznego, jest przejawem pola elektromagnetycznego. W zależności od układu odniesienia, w jakim znajduje się obserwator, to samo zjawisko może być opisywane jako objaw pola elektrycznego, magnetycznego albo obu.

    analogicznie jak operatory Operator ten ma także dwie wartości własne:

    Kontrola autorytatywna – w terminologii bibliotekoznawczej określenie procedur zapewniających utrzymanie w sposób konsekwentny haseł (nazw, ujednoliconych tytułów, tytułów serii i haseł przedmiotowych) w katalogach bibliotecznych przez zastosowanie wykazu autorytatywnego zwanego kartoteką wzorcową.Ciało skondensowane - ciało stałe lub ciecz. W tych stanach skupienia ruchowi mikroskopowemu dowolnej części składowej układu (cząsteczki) towarzyszy ruch innych jego części składowych. Średnie odległości między cząsteczkami w tym ciele są tego samego rzędu co rozmiary cząsteczek, co powoduje że oddziaływania międzycząsteczkowe stają się bardzo silne. Charakterystyczna dla ciał skondensowanych jest bardzo słaba zależność ich objętości molowej od ciśnienia i słaba od temperatury.
    oraz

    Powyżej przedstawiony formalizm matematyczny, w którym wielkościom obserwowanym przypisuje się odpowiednie operatory, daje przewidywania teoretyczne zgodne z doświadczeniem, gdyż:

    Promieniowanie elektromagnetyczne (fala elektromagnetyczna) – rozchodzące się w przestrzeni zaburzenie pola elektromagnetycznego.Gemeinsame Normdatei (GND) – kartoteka wzorcowa, stanowiąca element centralnego katalogu Niemieckiej Biblioteki Narodowej (DNB), utrzymywanego wspólnie przez niemieckie i austriackie sieci biblioteczne.

    Wykonując pomiary w dowolnym kierunku (który jest kierunkiem pola magnetycznego), zawsze otrzymuje się tylko dwa różne rzuty spinu na mierzony kierunek. Ten sam wynik przewiduje teoria kwantowa.

    Cząstki identyczne to cząstki nie różniące się żadną cechą. Ich nierozróżnialność polega na tym, że zmiana współrzędnych i spinów dwóch dowolnych cząstek tego samego rodzaju nie może zmienić prawdopodobieństwa znalezienia każdej z nich w określonej objętości. Liczby kwantowe cząstek identycznych są jednakowe. Funkcje falowe układu cząstek identycznych są albo symetryczne (dla bozonów) albo antysymetryczne (dla fermionów) przy zamianie liczb kwantowych tych cząstek.Definicja intuicyjna: Tensor – uogólnienie pojęcia wektora; wielkość, której własności pozostają identyczne niezależnie od wybranego układu współrzędnych.

    Operator wartości spinu[ | edytuj kod]

    Oprócz wyżej zdefiniowanych operatorów, można zdefiniować operator kwadratu całkowitego wektora spinu:

    Podstawiając wyrażenia na operatory otrzymuje się:

    Cząstka elementarna – w fizyce, cząstka, będąca podstawowym budulcem, czyli najmniejszym i nieposiadającym wewnętrznej struktury. Niemniej pojęcie to ze względów historycznych ma trochę inne znaczenie.Algebra Liego – w matematyce, struktura algebraiczna z określonym działaniem dwuargumentowym zwanym nawiasem Liego. Algebry Liego mają swoje zastosowanie m.in. podczas studiowania grup Liego, rozwiązywania układów nieliniowych etc.

    Na podstawie tego operatora wyznacza się wartość mierzonego spinu – określa ją pierwiastek ze średniej wartości operatora obliczonej dla pomiaru na dowolnym stanie kwantowym:

    Fala poprzeczna jest to fala, w której kierunek drgań cząstek ośrodka jest prostopadły do kierunku rozchodzenia się fali.Magnetyczna spinowa liczba kwantowa (ms)- może przyjmować dwie wartości: -½ i ½. Elektrony, rozróżniające się tylko wartością tej liczby kwantowej, są opisywane tym samym orbitalem w atomie. Często o elektronach różniących się znakiem magnetycznej kwantowej liczby spinowej mówi się, że mają przeciwne spiny.

    Powyższy wynik jest zgodny z ogólnym wzorem na długość wektora spinu

    Polaryzacja – właściwość fali poprzecznej polegająca na zmianach kierunku oscylacji rozchodzącego się zaburzenia w określony sposób.Neutrino (ν) – cząstka elementarna należąca do leptonów. Jest fermionem – jego spin jest równy 1/2. Ma zerowy ładunek elektryczny. Neutrina występują jako cząstki podstawowe w modelu standardowym. Doświadczenia przeprowadzone w ostatnich latach wskazują, że neutrina mają niewielką, bliską zeru masę spoczynkową. Powstają między innymi w wyniku rozpadu β, np. neutrino elektronowe (νe) powstaje podczas rozpadu 116C:

    wektora spisu o liczbie spinowej

    Podstawiając otrzymuje się wcześniej podany wynik.

    Wielkości jednocześnie mierzalne[ | edytuj kod]

    Ponieważ operator wyraża się przez macierz jednostkową, to komutuje z dowolną ze składowych spinu, np.

    „Stożki wektorowe” momentów pędu: całkowitego J (fiolet), orbitalnego L (niebieski) i spinowego S (zielony). Stożki powstają na skutek nieoznaczoności kwantowej składowych tych momentów

    Oznacza to, że możliwe jest w tym samym pomiarze zmierzenie długość wektora spinu cząstki wraz z długością jego rzutu na dowolny kierunek; jednak pozostałych dwóch składowych nie można wyznaczyć, gdyż składowe te nie komutują ze sobą. Wynik ten jest wyrazem nieoznaczoności kwantowej, jaka towarzyszy każdemu pomiarowi. W przypadku spinu pomiar pozwala jedynie na określenie stożka, na którym usytuowany jest wektor spinu. Oś tego stożka wyznacza kierunek zewnętrznego pola magnetycznego, a wysokość jest równa wielkości rzutu wektora spinu na kierunek pola.

    Składowe operatora spinu komutują ze składowymi operatora pędu Ponieważ składowe operatora pędu nie komutują ze sobą, podobnie jak składowe spinu, to powyższa własność oznacza, że można zmierzyć jednocześnie tylko jedną ze składowych wektora spinu wraz z jedną ze składowych wektora pędu.

    Własny moment magnetyczny elektronu[ | edytuj kod]

    Istnienie własnego momentu pędu elektronu (spinu) wiąże się z istnieniem własnego momentu magnetycznego elektronu, który jest proporcjonalny do wektora spinu i przeciwnie skierowany

    gdzie: – ładunek elektronu, – masa elektronu.

    To właśnie wewnętrzny moment magnetyczny elektronu jest odpowiedzialny za oddziaływanie z zewnętrznym polem magnetycznym, w wyniku czego następuje kwantowanie spinu.

    Operator wypadkowego momentu pędu[ | edytuj kod]

    Każdy elektron w atomie ma dwa momenty magnetyczne: orbitalny i spinowy Wektory te dodają się, tworząc wypadkowy moment pędu Rzuty każdego z tych wektorów na odpowiednie osie są skwantowane.

    Kwadrat operatora spinu nie jest niezmiennikiem relatywistycznym. Właściwym operatorem Casimira dla grupy Poincarégo jest kwadrat pseudowektora Pauliego-Lubańskiego, który jest związany z operatorem kwadratu całkowitego momentu pędu Zaś operator kwadratu spinu jest przykładem operatora Casimira w teorii algebr Liego, które są związane z grupą obrotów.

    Podstrony: [1] 2 [3] [4]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Reklama

    Czas generowania strony: 0.1 sek.