Silniowy system pozycyjny

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania

Silniowy system pozycyjnypozycyjny system liczbowy w którym mnożniki poszczególnych pozycji nie są definiowane przez potęgę pewnej liczby (podstawy), lecz silnię kolejnych liczb naturalnych (z zerem), a liczba cyfr używanych na -tej pozycji wynosi

Grecki system liczbowy – liczbowy system addytywny używający greckiego alfabetu do reprezentacji liczb. Obecnie w Grecji jego zastosowanie ogranicza się do reprezentacji liczebników porządkowych oraz w sytuacjach analogicznych do stosowania rzymskiego zapisu w kulturze zachodniej.Jakkolwiek mianem cyfr arabskich określa się obecnie używany powszechnie niemal na całym świecie zestaw symboli stosowanych do oznaczenia poszczególnych wartości liczbowych, to w rzeczywistości używane w większości krajów arabskich (i muzułmańskich) cyfry arabskie nie przypominają swych europejskich odpowiedników. Różnica ta wynika stąd, iż wygląd zapożyczonych w średniowieczu przez kulturę europejską symboli ewoluował w innym kierunku, niż wygląd tych samych znaków w kulturze islamu, przy czym cyfry w krajach arabskich bliższe są swoim indyjskim pierwowzorom.

Przykład:

Stąd zapis silniowy, np. liczby 4600, wygląda następująco:

Cyfry etruskie - system numeryczny używany przez plemiona etruskie; cyfry rzymskie rozwinęły się z cyfr etruskich. Na podstawie cyfr etruskich prawdopodobnie powstał również system numeryczny rowasz (rewasz), używany przez Szeklerów i karpackich górali, co byłoby zrozumiale w świetle hipotezy Alinei, że etruski to forma starowęgierskiego.System liczbowy głagolicy to system liczbowy języka cerkiewnosłowiańskiego. Jest to system addywny. W odróżnieniu od systemu liczbowego cyrylicy znane są również niektóre wartości dla rzędu tysięcy.

Ze względu na to, iż na pozycji zerowej jest zawsze zero, istnieje odmiana bez tej pozycji, co nie wpływa na wartości zapisywanych liczb.

Zapis jest jednoznaczny, tzn. każdą liczbę naturalną można zapisać w tylko jeden sposób i każdy zapis oddaje dokładnie jedną wartość.

Ciekawostki[ | edytuj kod]

Jako że:

Liczby naturalne – liczby służące podawaniu liczności (trzy osoby, zob. liczebnik główny/kardynalny) i ustalania kolejności (trzecia osoba, zob. liczebnik porządkowy), poddane w matematyce dalszym uogólnieniom (odpowiednio: liczby kardynalne, liczby porządkowe). Badaniem własności liczb naturalnych zajmują się arytmetyka i teoria liczb. Według finitystów, zwolenników skrajnego nurtu filozofii matematyki, są to jedyne liczby, jakimi powinna zajmować się matematyka - słynne jest stwierdzenie propagatora arytmetyzacji wszystkich dziedzin matematyki Leopolda Kroneckera: Liczby całkowite stworzył dobry Bóg. Reszta jest dziełem człowieka.Minus-dwójkowy system liczbowy nazywany również negabinarnym – pozycyjny system liczbowy, w którym podstawą jest liczba ujemna, a dokładniej -2. Do zapisu liczb w tym systemie potrzebne są, tak samo jak w systemie binarnym, cyfry 0 i 1n ie jest potrzebny znak"-" dla oznaczenia liczb ujemnych. Wartość liczby w tym systemie można przedstawić następująco:

więc do zapisu liczb naturalnych nie większych od 3628799 wystarczają cyfry 0...9, a do zapisu nieujemnych liczb aż do 20922789887999 – cyfry 0...F.

Dwudziestkowy system liczbowy – pozycyjny system liczbowy, w którym podstawą jest liczba 20. Do zapisu liczb potrzebne jest 20 cyfr. Cyfry 0-9 mają te same wartości co w systemie dziesiętnym, natomiast litery odpowiadają następującym wartościom: A = 10, B = 11, C = 12, D = 13, E = 14, F = 15, G = 16, H = 17, I = 18 oraz J = 19. W kalkulatorach naukowych o siedmiosegmentowych wyświetlaczach LCD stosuje się następujące oznaczenia kolejnych cyfr szesnastkowych: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, b, C, d, E, F, G, H, i, J (b i d i "i", zamiast B i D i I dla rozróżnienia wyświetlania, które wyglądają jak 8 i 0 i 1).Cyfry Suzhou (chiń. upr.: 苏州码子; chiń. trad.: 蘇州碼子; pinyin: sūzhōu mǎzi) lub huama (chiń. upr.: 花碼; chiń. trad.: 花码; pinyin: huāmǎ) to system liczbowy stosowany w Chinach przed wprowadzeniem cyfr arabskich.

Zobacz też[ | edytuj kod]

  • systemy pozycyjne
  • system resztowy




  • Warto wiedzieć że... beta

    Dwójkowy system liczbowy, system binarny, bin – pozycyjny system liczbowy, w którym podstawą jest liczba 2. Do zapisu liczb potrzebne są tylko dwie cyfry: 0 i 1.
    Starożytne cyfry egipskie były używane w Egipcie aż do wczesnych lat pierwszego tysiąclecia naszej ery. Był to system dziesiętny, często zaokrąglany w górę, zapisywany przy użyciu hieroglifów. System zapisu przez hieratykę wymuszał skończony zapis liczb.
    Siódemkowy system liczbowy to pozycyjny system liczbowy o podstawie 7. System siódemkowy jest czasem nazywany septymalnym (łac. septem - siedem). Do zapisu liczb używa się w nim siedmiu cyfr, od 0 do 6.
    Patyczki do liczenia (chiń. upr.: 籌; chiń. trad.: 筹; pinyin: chóu; japoński: 算木, sangi) to małe pręciki, zwykle mające 3–14 cm długości, używane przez matematyków w Chinach, Japonii, Korei i Wietnamie. Są one rozkładane poziomo lub pionowo aby przedstawić dowolną liczbę lub ułamek.
    Szesnastkowy system liczbowy, system heksadecymalny, hex – pozycyjny system liczbowy, w którym podstawą jest liczba 16. Skrót hex pochodzi od angielskiej nazwy hexadecimal. Do zapisu liczb w tym systemie potrzebne jest szesnaście znaków (cyfr szesnastkowych).
    Ósemkowy system liczbowy – pozycyjny system liczbowy o podstawie 8. System ósemkowy jest czasem nazywany oktalnym od słowa octal. Do zapisu liczb używa się w nim ośmiu cyfr, od 0 do 7.
    Rzymski system zapisywania liczb zwany też łacińskim – addytywny system liczbowy, w podstawowej wersji używa 7 znaków.

    Reklama