• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Sfera



    Podstrony: [1] [2] 3
    Przeczytaj także...
    Przestrzeń euklidesowa – przestrzeń o geometrii euklidesowej. Jest ona naturalnym elementem modeli świata rzeczywistego (łac. geometria = mierzenie ziemi) i stanowi dobre przybliżenie przestrzeni fizycznych w warunkach makroskopowych, jednak nie nadaje się do opisu rzeczywistości w bardzo małych, atomowych, lub bardzo wielkich, astronomicznych, wielkościach. Jednowymiarowa przestrzeń euklidesowa nazywana jest prostą euklidesową, zaś dwuwymiarowa – płaszczyzną euklidesową. Przestrzenie te nazywa się również przestrzeniami afinicznymi euklidesowymi w odróżnieniu od przestrzeni liniowych euklidesowych, znanych szerzej jako przestrzenie unitarne.Pseudosfera – powierzchnia obrotowa utworzona przez obrót traktrysy wokół jej asymptoty. Była analizowana już przez Eugenio Beltramiego w 1868 roku.
    Uogólnienia[]
     Zapoznaj się również z: hipersfera.

    Pojęcie sfery może być uogólnione na inną liczbę wymiarów. Wówczas w przestrzeni n-wymiarowej sfera może być opisana następującym wzorem:

    gdzie to j-ta współrzędna punktu na sferze, to j-ta współrzędna jej środka, r to promień sfery. W tym ujęciu okrąg jest szczególnym przypadkiem sfery w przestrzeni dwuwymiarowej, a zbiór dwóch punktów jest sferą w przestrzeni jednowymiarowej.

    Przestrzeń trójwymiarowa - potoczna nazwa przestrzeni euklidesowej o trzech wymiarach, lub równoważnej jej przestrzeni kartezjańskiej. Przymiotnik "trójwymiarowa" oznacza, że każdemu punktowi tej przestrzeni odpowiada trójka uporządkowana liczb rzeczywistych, zwanych współrzędnymi. Każdej trójce liczb rzeczywistych także odpowiada punkt tej przestrzeni.Przestrzeń metryczna – zbiór z zadaną na nim metryką, tj. funkcją, która określa odległość między każdą parą elementów tego zbioru.

    Sfera w przestrzeni n-wymiarowej jest czasem nazywana sferą m-wymiarową i oznaczana , gdzie , ponieważ taka sfera jest powierzchnią m-wymiarową. Dla przykładu, zwykłą sferę rozpatruje się w przestrzeni trójwymiarowej, ale ona jest zwykłą powierzchnią czyli obiektem dwuwymiarowym; dlatego to sfera dwuwymiarowa, . Jeżeli (tzn. ), to taka uogólniona sfera jest nazywana też hipersferą.

    Okrąg – brzeg koła; zbiór wszystkich punktów płaszczyzny euklidesowej odległych od ustalonego punktu, nazywanego środkiem, o zadaną odległość, nazywaną promieniem.Topologia (gr. tópos – miejsce, okolica; lógos – słowo, nauka) – jeden z najważniejszych kierunków w matematyce współczesnej. Obiektem jej badań są te własności figur geometrycznych i brył, które nie ulegają zmianie nawet po radykalnym zdeformowaniu tych figur (a więc np. położenie i sąsiedztwo). Własności takie nazywa się własnościami topologicznymi figury.

    Pojęcie sfery może być jeszcze bardziej uogólnione na dowolną przestrzeń metryczną. Jest to wówczas zbiór elementów tej przestrzeni, odległych od jakiegoś elementu przestrzeni (zwanego środkiem sfery) o zadaną odległość (zwaną promieniem sfery) zgodnie z obowiązującą w danej przestrzeni metryką.

    Sfera jest też pojęciem topologii, w której oznacza rozmaitość, homeomorficzną ze sferą geometryczną, zdefiniowaną jak powyżej.

    Układ współrzędnych – funkcja przypisująca każdemu punktowi danej przestrzeni (w szczególności przestrzeni dwuwymiarowej – płaszczyzny, powierzchni kuli itp.) skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu.Pole powierzchni (potocznie po prostu powierzchnia figury lub pole figury) – miara, przyporządkowująca danej figurze nieujemną liczbę w pewnym sensie charakteryzującą jej rozmiar.

    Zobacz też[]

  • kula
  • pseudosfera
  • pas sferyczny
  • rogata sfera Alexandera


  • Podstrony: [1] [2] 3



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Zbiór – pojęcie pierwotne teorii zbiorów (znanej szerzej jako teoria mnogości; za jej twórcę uważa się Georga Cantora) leżące u podstaw całej matematyki; intuicyjnie jest to nieuporządkowany zestaw różnych obiektów, czy też kolekcja niepowtarzających się komponentów bez wyróżnionej kolejności.
    Odcinek – w geometrii część prostej zawarta pomiędzy dwoma jej punktami z tymi punktami włącznie. Odcinek w całości zawiera się wewnątrz tej prostej.
    Homeomorfizm – jedno z fundamentalnych pojęć topologii. Intuicyjnie - przekształcenie, które dowolnie ściska, rozciąga, wygina lub skręca figurę, nie robi jednak w niej dziur, nie rozrywa jej ani nie skleja jej fragmentów. Inaczej mówiąc, przekształcenie to na ogół zmienia pierwotny kształt i rozmiar figury, zawsze jednak zachowuje potocznie rozumianą ciągłość i spoistość.
    Pas kulisty, pas sferyczny – część sfery znajdująca się między dwiema równoległymi płaszczyznami odległymi od środka sfery o nie więcej niż promień R {displaystyle R} , wraz z punktami wspólnymi sfery i tych płaszczyzn.
    Definicja intuicyjna: Kula to zbiór punktów oddalonych nie bardziej niż pewna zadana odległość (promień kuli) od wybranego punktu (środek kuli)
    Wymiar, w intuicyjnym znaczeniu, to minimalna liczba niezależnych parametrów potrzebnych do opisania jakiegoś zbioru. Zatem jest to liczba przypisana zbiorowi lub przestrzeni w taki sposób, by punkt miał w.=0, prosta w.=1, płaszczyzna w.=2 itd.
    Punkt –  w najogólniejszym ujęciu – to element pewnego zbioru. Np. w zbiorze liczb punktem będzie liczba, w zbiorze samochodów - punktem będzie jakiś samochód. Punkt – rozważany w geometrii – to bezwymiarowy obiekt geometryczny; pojęcie punktu stanowi jedno z podstawowych pojęć geometrii; punkt ma zerowe rozmiary, dwa punkty mogą więc różnić się tylko położeniem. Punkty zaznacza się na rysunku jako × (krzyżyk), kółko lub kropkę i tradycyjnie oznacza wielkimi literami alfabetu łacińskiego (A, B, C).

    Reklama

    Czas generowania strony: 0.022 sek.