Saturn
Podstrony: 1 [2] [3] [4] [5] [6]
Asysta grawitacyjna – w astrodynamice pojęcie określające zmianę prędkości i kierunku lotu kosmicznego przy użyciu pola grawitacyjnego planety lub innego dużego ciała niebieskiego. Jest to obecnie powszechnie używana metoda uzyskiwania prędkości pozwalających osiągnąć zewnętrzne planety Układu Słonecznego. Została opracowana w 1959 roku w moskiewskim Instytucie Matematyki im. Stiekłowa.Tytan (Saturn VI) – największy księżyc Saturna, jedyny księżyc w Układzie Słonecznym posiadający gęstą atmosferę, w której zachodzą skomplikowane zjawiska atmosferyczne. Jest to również jedyne ciało poza Ziemią, na powierzchni którego odkryto powierzchniowe zbiorniki cieczy – jeziora. Nie wypełnia ich jednak woda, ale ciekły metan, który na Ziemi występuje w postaci palnego gazu.
Saturn – gazowy olbrzym, szósta planeta Układu Słonecznego pod względem odległości od Słońca, druga po Jowiszu pod względem masy i wielkości. Charakterystyczną jego cechą są pierścienie, składające się głównie z lodu i w mniejszej ilości z odłamków skalnych; inne planety-olbrzymy także mają systemy pierścieni, ale żaden z nich nie jest tak rozległy ani tak jasny. Według danych z października 2019 roku znane są 82 naturalne satelity Saturna, co czyni go liderem wśród planet z największą liczbą księżyców.
Promień Saturna jest około 9 razy większy od promienia Ziemi. Chociaż jego gęstość to tylko jedna ósma średniej gęstości Ziemi, ze względu na wielokrotnie większą objętość masa Saturna jest dziewięćdziesiąt pięć razy większa niż masa Ziemi.
We wnętrzu Saturna panują ciśnienie i temperatura, których nie udało się dotąd uzyskać w laboratoriach na Ziemi. Wnętrze gazowego olbrzyma najprawdopodobniej składa się z jądra z żelaza, niklu, krzemu i tlenu, otoczonego warstwą metalicznego wodoru, warstwy pośredniej ciekłego wodoru i ciekłego helu oraz zewnętrznej warstwy gazowej. Prąd elektryczny w warstwie metalicznej wodoru generuje pole magnetyczne Saturna, które jest nieco słabsze niż pole magnetyczne Ziemi i ma około jedną dwudziestą natężenia pola wokół Jowisza. Zewnętrzna warstwa atmosfery wydaje się na ogół spokojna, choć mogą się na niej utrzymywać długotrwałe układy burzowe. Na Saturnie wieją wiatry o prędkości ok. 1800 km/h; są one silniejsze niż na Jowiszu.
Saturn ma 9 pierścieni, składających się głównie z cząsteczek lodu, a także ze skał i pyłu kosmicznego. Potwierdzono odkrycie 82 księżyców krążących po orbicie planety, spośród których 53 mają oficjalne nazwy. Do tego dochodzą setki „miniksiężyców” w pierścieniach planetarnych. Jego księżyc Tytan to drugi co do wielkości księżyc w Układzie Słonecznym (po księżycu Jowisza Ganimedesie), jest większy od planety Merkury i jest jedynym księżycem w Układzie Słonecznym posiadającym gęstą atmosferę.
Warunki fizyczne[ | edytuj kod]
Ze względu na małą gęstość, szybki obrót i płynny stan większości tworzącej go materii Saturn jest spłaszczony na biegunach i wybrzuszony na równiku. Jego równikowe i biegunowe promienie różnią się prawie o 10% (równikowy – 60 268 km, biegunowy – 54 364 km). Pozostałe planety-olbrzymy są również spłaszczone, lecz w mniejszym stopniu. Saturn to jedyna planeta w Układzie Słonecznym o średniej gęstości mniejszej od gęstości wody. Chociaż jądro Saturna jest znacznie gęstsze od wody, to ze względu na gazową atmosferę średnia gęstość planety to zaledwie 0,69 g/cm³. Masa Saturna jest 95 razy większa niż masa Ziemi. Dla porównania Jowisz ma masę 318 razy większą niż Ziemia, choć jego średnica jest tylko o około 20% większa niż średnica Saturna.
Struktura wewnętrzna[ | edytuj kod]
Choć nie ma bezpośrednich informacji o wewnętrznej strukturze Saturna, uważa się, że jego wnętrze jest podobne do wnętrza Jowisza. Składa się z małego skalistego jądra otoczonego głównie przez wodór i hel. Skaliste jądro podobne jest w składzie do Ziemi, ale gęstsze. Jądro otacza grubsza warstwa płynnego metalicznego wodoru, następnie warstwa ciekłego wodoru i helu oraz zewnętrzna, gruba na 1000 km, gazowa atmosfera. W atmosferze obecne są również śladowe ilości różnych substancji lotnych. Masa jądra jest szacowana na 9–22 mas Ziemi. Saturn ma bardzo gorące wnętrze; temperatura w centrum osiąga 11 700 °C. Promieniuje on w przestrzeń kosmiczną 2,5 raza więcej energii, niż otrzymuje od Słońca. Większość dodatkowej energii jest generowana przez mechanizm Kelvina-Helmholtza (powolne zapadanie grawitacyjne), ale samo to może nie wystarczyć do wyjaśnienia wytwarzania ciepła przez Saturna. Być może dodatkowym źródłem ciepła jest opad kropel helu w głąb planety poprzez lżejszy wodór i rozpraszanie energii poprzez tarcie.
Atmosfera[ | edytuj kod]
Zewnętrzne warstwy atmosfery Saturna składają się z 96,3% wodoru i 3,25% helu. Wykryto śladowe ilości amoniaku, acetylenu, etanu, fosforowodoru i metanu. Górna warstwa chmur na Saturnie składa się z kryształów amoniaku, podczas gdy niższa wydaje się mieć w składzie albo kwaśny siarczek amonu (NH4SH), albo wodę. Atmosfera Saturna jest zubożona w hel w stosunku do jego ilości na Słońcu. Zawartość pierwiastków cięższych od helu nie jest dokładnie znana; zakłada się, że występują one w takich proporcjach, jakie występowały w czasie powstania Układu Słonecznego. Całkowita masa tych pierwiastków jest szacowana na 19–31 razy więcej niż masa Ziemi, a znaczna ich część znajduje się w jądrze planety.
Warstwy chmur[ | edytuj kod]
Atmosfera Saturna jest podobna do atmosfery Jowisza i tak jak ona składa się z równoleżnikowo ułożonych pasów, jednak pasma chmur Saturna są znacznie mniej wyraźne i o wiele szersze w pobliżu równika. W głębi istnieje warstwa chmur składających się z lodu, grubości około 10 km, gdzie temperatura wynosi ok. −23 °C. Powyżej tej warstwy jest prawdopodobnie warstwa zawierająca kryształki zamrożonego wodorosiarczku amonu, która rozciąga się na kolejne 50 km i ma około −93 °C. Osiemdziesiąt kilometrów ponad tą warstwą znajduje się warstwa, w której chmury tworzy lód amoniakalny, a temperatura jest równa około −153 °C. Górną część atmosfery, rozciągającą się do wysokości 200–270 km ponad widocznymi chmurami amoniaku, tworzą gazowy wodór i hel. Wiatry na Saturnie są jednymi z najszybszych w Układzie Słonecznym. Dane z Voyagera wskazują, że prędkość wschodniego wiatru dochodziła do 500 m/s (1800 km/h); drobnoskalowa struktura chmur Saturna nie była dostrzegana do czasu przelotów sond Voyager. Od tego czasu jednak rozdzielczość naziemnych teleskopów wzrosła na tyle, że możliwe są regularne obserwacje.
W zwykle pozbawionej wyrazistych szczegółów atmosferze planety od czasu do czasu pojawiają się owalne struktury, podobne do występujących na Jowiszu. W 1990 Kosmiczny Teleskop Hubble’a zaobserwował ogromny biały obłok w pobliżu równika planety, który nie był obecny podczas przelotu Voyagerów, a w 1994 zaobserwowano inną, mniejszą burzę. W 1990 przez krótki okres widoczna była Wielka Biała Plama, występująca na Saturnie raz w ciągu jednego obiegu wokół Słońca (około 30 lat ziemskich), na północnej półkuli około saturniańskiego przesilenia letniego. Wielką Białą Plamę obserwowano poprzednio w latach: 1876, 1903, 1933 i 1960. Burza z 1933 roku jest najbardziej znaną. Jeśli okresowość jej występowania zostanie zachowana, kolejna burza wystąpi około roku 2020.
Na zdjęciach wykonanych przez sondę Cassini północna półkula Saturna ma jasnoniebieski kolor, podobny jak na Uranie, co ukazuje zamieszczona fotografia. Zjawisko to jest okresowo niewidoczne z Ziemi – gdy pierścienie Saturna zasłaniają widok północnej półkuli planety. Kolor ten najprawdopodobniej jest powodowany przez rozpraszanie Rayleigha.
Obrazy w podczerwieni wykazały, że na południowym biegunie Saturna występuje ciepły wir polarny; takie wiry występują także na innych planetach w Układzie Słonecznym, ale nigdzie indziej nie są one cieplejsze niż otoczenie. Podczas gdy temperatura na Saturnie to zwykle −185 °C, temperatura w wirze często sięga powyżej −122 °C, uważa się więc, że jest on najcieplejszym miejscem w widocznej warstwie atmosfery Saturna.
Wielka sześciokątna burza nad biegunem północnym[ | edytuj kod]
Utrzymujący się sześciokątny falowy wzór wokół północnego wiru polarnego w atmosferze 78°N po raz pierwszy zauważono na zdjęciach Voyagera. W przeciwieństwie do bieguna północnego, obrazy z Kosmicznego Teleskopu Hubble’a w regionie bieguna południowego wskazują na obecność prądów strumieniowych, nie stwierdzają silnego wiru polarnego ani sześciokątnej struktury. W listopadzie 2006 roku NASA doniosła, że sonda Cassini zaobserwowała cyklon na biegunie południowym, który posiadał wyraźne oko. Strukturę taką obserwowano dotąd tylko na Ziemi (sonda Galileo nie zdołała dostrzec oka Wielkiej Czerwonej Plamy na Jowiszu).
Prosty bok „sześciokąta” na biegunie ma długość około 13 800 km. Okres obrotu całego cyklonu to 10 h 39 min 24 s i jest równy okresowi emisji radiowych z Saturna, który uznaje się za równy okresowi obrotu planety. Sześciokątna struktura nie przesuwa się więc i nie zmienia długości planetograficznej, tak jak inne chmury widoczne w atmosferze.
Przyczyna powstawania tej struktury jest obiektem spekulacji. Większość astronomów uważa, że jest ona rodzajem fali stojącej w atmosferze; jednakże sześciokąt może być związany ze zjawiskiem zorzy polarnej. Kształt wielokąta udało się uzyskać w wirujących płynach także w ziemskich laboratoriach, ale związek takich wirów z zachowaniem atmosfery Saturna nie jest pewny.
Podstrony: 1 [2] [3] [4] [5] [6]