• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Reakcja termojądrowa

    Przeczytaj także...
    Promieniowanie gamma – wysokoenergetyczna forma promieniowania elektromagnetycznego. Za promieniowanie gamma uznaje się promieniowanie o energii kwantu większej od 50 keV. Zakres ten częściowo pokrywa się z zakresem promieniowania rentgenowskiego. W wielu publikacjach rozróżnienie promieniowania gamma oraz promieniowania X (rentgenowskiego) opiera się na ich źródłach, a nie na długości fali. Promieniowanie gamma wytwarzane jest w wyniku przemian jądrowych albo zderzeń jąder lub cząstek subatomowych, a promieniowanie rentgenowskie – w wyniku zderzeń elektronów z elektronami powłok wewnętrznych lub ich rozpraszaniu w polu jąder atomu. Promieniowanie gamma jest promieniowaniem jonizującym i przenikliwym. Promieniowania gamma oznacza się grecką literą γ, analogicznie do korpuskularnego promieniowania alfa (α) i beta (β).Deficyt masy (niedobór masy, defekt masy) – różnica między sumą mas poszczególnych składników układu fizycznego a masą tego układu. Najczęściej jest używana w odniesieniu do różnicy między sumą mas nukleonów wchodzących w skład jądra atomowego a masą jądra. Iloczyn niedoboru masy i kwadratu prędkości światła w próżni jest równy energii wiązania jądra, ΔE.
    Zimna fuzja (ang. cold fusion) – nazwa hipotetycznej metody fuzji jąder atomowych, którą dałoby się przeprowadzić w temperaturze znacznie niższej niż dla znanych obecnie reakcji termojądrowych.
    Reakcja fuzji termojądrowej, jądra deuteru i trytu łączą się, powstaje jądro helu, neutron i wydzielana jest energia.

    Reakcja termojądrowa, synteza jądrowa lub fuzja jądrowazjawisko polegające na złączeniu się dwóch lżejszych jąder w jedno cięższe. W wyniku fuzji mogą powstawać obok nowych jąder też wolne neutrony, protony, cząstki elementarne i cząstki alfa.

    Nukleony – wspólna nazwa protonów i neutronów, czyli podstawowych cząstek tworzących jądro atomu. Nukleony składają się z kwarków. Choć przez obecne teorie cząstek protony i neutrony nie są uznawane za cząstki elementarne, ale z historycznych względów zalicza się je do cząstek elementarnych.Mechanika kwantowa (teoria kwantów) – teoria praw ruchu obiektów świata mikroskopowego. Poszerza zakres mechaniki na odległości czasoprzestrzenne i energie, dla których przewidywania mechaniki klasycznej nie sprawdzały się. Opisuje przede wszystkim obiekty o bardzo małych masach i rozmiarach - np. atom, cząstki elementarne itp. Jej granicą dla średnich rozmiarów lub średnich energii czy pędów jest mechanika klasyczna.

    Różne jądra atomowe mają różną energię wiązania przypadającą na nukleon. Największą energię wiązania przypadającą na jeden nukleon ma żelazo.

    W wyniku reakcji egzotermicznej wydzielona energia (w postaci energii kinetycznej produktów i promieniowania gamma), zostaje rozproszona na otaczających atomach i przekształca się na energię cieplną. Energię wydzielającą się podczas reakcji można wyznaczyć bez przeprowadzania reakcji na podstawie deficytu masy, czyli różnicy mas składników i produktów reakcji.

    Foton (gr. φως – światło, w dopełniaczu – φοτος, nazwa stworzona przez Gilberta N. Lewisa) jest cząstką elementarną, nie posiadającą ładunku elektrycznego ani momentu magnetycznego, o masie spoczynkowej równej zero (m0 = 0), liczbie spinowej s = 1 (fotony są zatem bozonami). Fotony są nośnikami oddziaływań elektromagnetycznych, a ponieważ wykazują dualizm korpuskularno-falowy, są równocześnie falą elektromagnetyczną.Energia wiązania – energia potrzebna do rozdzielenia układu na jego elementy składowe i oddalenia ich od siebie tak, by przestały ze sobą oddziaływać.

    Jądra atomowe mają dodatni ładunek elektryczny i dlatego się odpychają – aby doszło do ich połączenia muszą zbliżyć się na tyle, aby siły oddziaływań jądrowych pokonały odpychanie elektrostatyczne. Niezbędnym warunkiem do tego jest prędkość (energia kinetyczna) jąder. Wysoką energię jąder uzyskuje się w bardzo wysokich temperaturach lub rozpędzając jądra w akceleratorach cząstek.

    Akcelerator – urządzenie służące do przyspieszania cząstek elementarnych lub jonów do prędkości bliskich prędkości światła. Cząstki obdarzone ładunkiem elektrycznym są przyspieszane w polu elektrycznym. Do skupienia cząstek w wiązkę oraz do nadania im odpowiedniego kierunku używa się odpowiednio ukształtowanego, w niektórych konstrukcjach także zmieniającego się w czasie, pola magnetycznego lub elektrycznego.Zjawisko tunelowe zwane też efektem tunelowym – zjawisko przejścia cząstki przez barierę potencjału o wysokości większej niż energia cząstki, opisane przez mechanikę kwantową. Z punktu widzenia fizyki klasycznej stanowi paradoks łamiący klasycznie rozumianą zasadę zachowania energii, gdyż cząstka przez pewien czas przebywa w obszarze zabronionym przez zasadę zachowania energii.

    Przedrostek termo pochodzi od głównego sposobu, w jaki wywoływana jest ta reakcja w gwiazdach i bombie wodorowej, czyli przez podniesienie temperatury do kilkunastu milionów kelwinów. W skali atomowej oznacza to bardzo dużą energię zderzenia cząstek. Istnieje hipoteza, że synteza jądrowa może zachodzić również w niższych temperaturach (zimna fuzja).

    Wodór (H, łac. hydrogenium) – pierwiastek chemiczny o liczbie atomowej 1, niemetal z bloku s układu okresowego. Jego izotop, prot, jest najprostszym możliwym atomem, zbudowanym z jednego protonu i jednego elektronu.Pierwotna nukleosynteza – nukleosynteza, która zachodziła we wczesnej fazie ewolucji Wszechświata, w wyniku czego doszło do powstania jąder atomowych innych niż proton (jądro wodoru H).

    Reakcja termojądrowa jest głównym, poza energią grawitacyjną, źródłem energii gwiazd.

    Nukleosynteza[]

     Osobny artykuł: Nukleosynteza.

    Reakcje termojądrowe w gwiazdach[]

    Cykl protonowy[]

     Osobny artykuł: Cykl protonowy.

    W niezbyt masywnych gwiazdach ciągu głównego podstawową reakcją jest synteza jądra helu. Aby synteza nastąpiła, jądra wodoru (protony) muszą się zbliżyć na odległość zasięgu oddziaływania jądrowego (około 1 fm = 10 cm). Protony odpychają się jednak elektrostatycznie, a zatem muszą pokonać barierę potencjału o wartości około E = 1 MeV. Taką energię termiczną mają cząstki o temperaturze 10 K. Tak wysokiej temperatury nie ma we wnętrzu gwiazd, ale przebieg zjawiska w niższej temperaturze tłumaczy zjawisko tunelowe.

    Kosmologia obserwacyjna jest działem astronomii, a dokładnie astrofizyki. Zajmuje się badaniem Wszechświata, jego kształtu i ewolucji (do największej możliwej skali, po horyzont cząstek). Kosmologia obserwacyjna bazuje na kosmologii teoretycznej, tworzącej formalizmy matematyczne w postaci matematycznych modeli Wszechświata.Hel (He, łac. helium) – pierwiastek chemiczny o liczbie atomowej 2, z grupy helowców (gazów szlachetnych) w układzie okresowym. Jest po wodorze drugim najbardziej rozpowszechnionym pierwiastkiem chemicznym we wszechświecie, jednak na Ziemi występuje wyłącznie w śladowych ilościach (4×10% w górnych warstwach atmosfery).

    Proces syntezy helu z wodoru przebiega w wyniku kilku procesów:

    Proces ten jest konsekwencją oddziaływań słabych (wymiany bozonu W). Podczas syntezy następuje odwrotny rozpad β:

    Żelazo (Fe, łac. ferrum) – metal z VIII grupy pobocznej o dużym znaczeniu gospodarczym, znane od czasów starożytnych.Temperatura – jedna z podstawowych wielkości fizycznych (parametrów stanu) w termodynamice. Temperatura jest związana ze średnią energią kinetyczną ruchu i drgań wszystkich cząsteczek tworzących dany układ i jest miarą tej energii.
    .

    Reakcja ta, jako konsekwencja oddziaływań słabych, jest bardzo powolna. Powoduje to, że gwiazdy świecą długo, a nie spalają się w jednej chwili, lecz w ciągu milionów czy miliardów lat. W wyniku tej reakcji i w wyniku oddziaływania jądrowego tworzy się deuter:

    Kelwin – jednostka temperatury w układzie SI równa 1/273,16 temperatury termodynamicznej punktu potrójnego wody, oznaczana K. Definicja ta odnosi się do wody o następującym składzie izotopowym: 0,00015576 mola H na jeden mol H, 0,0003799 mola O na jeden mol O i 0,0020052 mola O na jeden mol O.Konwekcja – proces przekazywania ciepła związany z makroskopowym ruchem materii w gazie, cieczy bądź plazmie, np. powietrzu, wodzie, plazmie gwiazdowej. Czasami przez konwekcję rozumie się również sam ruch materii związany z różnicami temperatur, który prowadzi do przenoszenia ciepła. Ruch ten precyzyjniej nazywa się prądem konwekcyjnym.

    Reakcja ta jest niezmiernie wolna. Następna reakcja:

    Proton, p (z gr. πρῶτον – "pierwsze") − trwała cząstka subatomowa z grupy barionów o ładunku +1 i masie spoczynkowej równej ok. 1 u.Syriusz (znany także jako Kanikuła, Psia Gwiazda oraz α CMa) – najjaśniejsza i jedna z najbliższych gwiazd nocnego nieba, położona w gwiazdozbiorze Wielkiego Psa. Jej jasność obserwowana wynosi -1,47 magnitudo, a odległość od Układu Słonecznego wynosi około 8,6 lat świetlnych. Nazwa pochodzi ze starogreckiego Σείριος Seírios (‘gorący’, ‘prażący’, ‘skwarny’, ‘ognisty’).

    prowadzi do powstania izotopu helu, po którym następuje fuzja dwóch jąder helu:

    Promieniowanie kosmiczne – promieniowanie złożone, zarówno korpuskularne jak i elektromagnetyczne, docierające do Ziemi z otaczającej ją przestrzeni kosmicznej. Korpuskularna część promieniowania składa się głównie z protonów (90% cząstek), cząstek alfa (9%), elektronów (ok 1%) i nielicznych cięższych jąder. Promieniowanie docierające bezpośrednio z przestrzeni kosmicznej nazywamy promieniowaniem kosmicznym pierwotnym. Cząstki docierające do Ziemi w wyniku reakcji promieniowania kosmicznego pierwotnego z jądrami atomów gazów atmosferycznych, to promieniowanie wtórne.Proces s (ang. s-process, slow neutron captures process) – reakcja jądrowa nukleosyntezy zachodząca przy stosunkowo niskiej gęstości neutronów i średniej temperaturze, zachodząca w gwiazdach o masach porównywalnych do masy Słońca w końcowym etapie ich życia, gdy gwiazda przechodzi przez fazę AGB.

    Opisany powyżej ciąg reakcji jądrowych zwany jest cyklem wodorowym. W pojedynczym cyklu tworzenia 1 jądra helu z 4 protonów emitowane jest 26,7 MeV energii i jest to główne źródło energii gwiazd. Część energii jest tracona przez uchodzące neutrina (1,6 MeV).

    ITER (International Thermonuclear Experimental Reactor) - dosł. Międzynarodowy Eksperymentalny Reaktor Termonuklearny - reaktor termonuklearny, jak również międzynarodowy program badawczy z nim związany, którego celem jest zbadanie możliwości produkowania na wielką skalę energii z kontrolowanej fuzji jądrowej. Głównym zadaniem jest budowa wielkiego tokamaka, wzorowanego na wcześniej budowanych mniejszych DIII-D, TFTR, JET, JT-60 i T-15. Program jest przewidywany na 30 lat (10 lat budowy i 20 lat pracy reaktora), i ma kosztować w przybliżeniu 10 miliardów €. Tym samym jest to drugi najdroższy na świecie program badawczy, tańszy jedynie od Międzynarodowej Stacji Kosmicznej. Według decyzji z dnia 28 czerwca 2005 tokamak powstanie w Cadarache w pobliżu Marsylii, na południu Francji. W projekcie uczestniczą finansowo i naukowo: Unia Europejska, Japonia, Rosja, Stany Zjednoczone, Chiny (od 2003), Korea Południowa (od 2003) i Indie (od 2005). Przed przystąpieniem do programu Indii zakładano, że Unia Europejska pokryje 50% kosztów jego budowy, a pozostałe strony po 10% każda w formie komponentów.Czynnik skali jest w kosmologii wielkością zależną tylko od czasu kosmicznego, wiążącą odległość własną pomiędzy dwoma punktami z odległością we współrzędnych współporuszających się:

    Zderzające się jądra mają zazwyczaj energię mniejszą od energii potrzebnej do pokonania bariery potencjału elektrycznego, ale przenikają przez nią na skutek zjawiska kwantowego zwanego efektem tunelowym. W wyniku syntezy produkowane są nowe jądra, neutrina i fotony. Wysokoenergetyczne fotony przekazują najpierw energię materii gwiazd, podgrzewając ją, aby po pewnym czasie jako promieniowanie cieplne wydostać się z gwiazdy. Niemal wszystkie neutrina opuszczają wnętrza gwiazd bez zderzeń z materią gwiazdy. Dla fotonów środowisko wnętrza gwiazdy nie jest przezroczyste. Średnia droga swobodna wysokoenergetycznego fotonu we wnętrzu Słońca wynosi około m. Wydostawanie się energii z wnętrza gwiazdy na zewnątrz następuje w wyniku promieniowania wysokoenergetycznego, promieniowania cieplnego oraz konwekcji gazu w gwieździe. Na procesy te wpływa też zmiana ruchu cząstek w polu magnetycznym.

    Entropia – termodynamiczna funkcja stanu, określająca kierunek przebiegu procesów spontanicznych (samorzutnych) w odosobnionym układzie termodynamicznym. Entropia jest miarą stopnia nieuporządkowania układu. Jest wielkością ekstensywną. Zgodnie z drugą zasadą termodynamiki, jeżeli układ termodynamiczny przechodzi od jednego stanu równowagi do drugiego, bez udziału czynników zewnętrznych (a więc spontanicznie), to jego entropia zawsze rośnie. Pojęcie entropii wprowadził niemiecki uczony Rudolf Clausius.Oddziaływanie elektrostatyczne – wzajemne oddziaływanie ciał (np. cząsteczek) posiadających ładunek elektryczny, np. 2 jonów lub jonu.

    Reakcje syntezy cyklu wodorowego nastąpiły w młodym Wszechświecie (kosmologia) podczas procesu nukleosyntezy. Podczas ekspansji Wszechświata rosła objętość (, a(t) jest czynnikiem skali), malała temperatura , tak że gęstość entropii była stała. Oznacza to, że w pewnym okresie istniały warunki odpowiednie do syntezy lekkich pierwiastków. Zjawiskiem tym tłumaczy się stały stosunek ilościowy wodoru do helu w obłokach kosmicznych. W przeciwieństwie do gwiazdy, gdy temperatura jest w wyniku równowagi stała, w młodym Wszechświecie temperatura ciągle spadała (i spada nadal).

    Cykl węglowo-azotowo-tlenowy (CNO) – cykl przemian jąder atomowych, których efektem jest przemiana wodoru w hel oraz powstawanie dużych ilości energii. Jest źródłem energii dla masywnych gwiazd, ponieważ może zachodzić tylko w bardzo dużych temperaturach (rzędu 20 milionów kelwinów).Ładunek elektryczny ciała (lub układu ciał) – fundamentalna właściwość materii przejawiająca się w oddziaływaniu elektromagnetycznym ciał obdarzonych tym ładunkiem. Ciała obdarzone ładunkiem mają zdolność wytwarzania pola elektromagnetycznego oraz oddziaływania z tym polem. Oddziaływanie ładunku z polem elektromagnetycznym jest określone przez siłę Lorentza i jest jednym z oddziaływań podstawowych.

    Cykl węglowo-azotowo-tlenowy[]

     Osobny artykuł: Cykl węglowo-azotowo-tlenowy.

    Dla bardziej masywnych gwiazd ciągu głównego, takich jak Syriusz A, zachodzi cykl węglowo-azotowy. Wymaga on obecności jąder jako katalizatora. Cykl składa się z reakcji:

    Rozpad beta minus, przemiana β - reakcja jądrowa, w której emitowany jest elektron e (promieniowanie beta) oraz antyneutrino elektronowe. Rozpady β i β zachodzą w wyniku oddziaływań słabych.Neutron (z łac. neuter – "obojętny") – cząstka subatomowa występująca w jądrach atomowych. Jest obojętny elektrycznie. Posiada spin ½.

    W procesie tych reakcji wyłaniana jest energia 23,8 MeV. Około 98,4% energii w Słońcu jest produkowane w wyniku cyklu wodorowego, a tylko 1,6% w wyniku cyklu węglowo-azotowego. Znaczenie tego ostatniego cyklu wzrasta, gdy temperatura gwiazdy jest wyższa.

    Bariera potencjału - ograniczony obszar (zazwyczaj niewielki), w którym energia potencjalna cząstki (punktu materialnego) przyjmuje wartości większe niż w jego otoczeniu.Elektronowolt (eV) – jednostka energii stosowana w fizyce. Jeden elektronowolt jest to energia, jaką uzyskuje bądź traci elektron, który przemieścił się w polu elektrycznym o różnicy potencjałów równej 1 woltowi:

    Nukleosynteza w gwiazdach olbrzymach[]

    W olbrzymach i nadolbrzymach następuje spalanie helu i synteza węgla, a następnie tlenu, neonu i magnezu, w procesach z udziałem cząstek alfa (jąder helu-4). Wyższe nuklidy, od krzemu aż do niklu, powstają w wyniku fuzji C, O, Ne, Mg i He. Nuklidy o nieparzystych liczbach atomowych powstają w wyniku wychwytu neutronów lub protonów.

    Gwiazda – kuliste ciało niebieskie stanowiące skupisko powiązanej grawitacyjnie materii w stanie plazmy bądź zdegenerowanej. Przynajmniej przez część swojego istnienia gwiazda w sposób stabilny emituje powstającą w jej jądrze w wyniku procesów syntezy jądrowej atomów wodoru energię w postaci promieniowania elektromagnetycznego, w szczególności światło widzialne. Gwiazdy zbudowane są głównie z wodoru i helu, prawie wszystkie atomy innych cięższych pierwiastków znajdujące się we Wszechświecie powstały w efekcie zachodzących w nich przemian jądrowych lub podczas wieńczących ich istnienie wybuchów.Kontrolowana synteza termojądrowa - reakcja termojądrowa, która miałaby podlegać kontrolowanemu przebiegowi. Główną motywacją kontrolowania syntezy termojądrowej jest wykorzystanie jej jako źródła energii.
     Ta sekcja jest niekompletna. Jeśli możesz, rozbuduj ją.

    Nukleosynteza w supernowych[]

    Podczas wybuchu supernowych powstają nuklidy cięższe od niklu, m.in. w procesie szybkiego wychwytu neutronów.

     Ta sekcja jest niekompletna. Jeśli możesz, rozbuduj ją.

    Promieniowanie kosmiczne[]

     Osobny artykuł: promieniowanie kosmiczne.

    Wysokoenergetyczne promieniowanie kosmiczne (składające się w dużej mierze z protonów) powoduje wymuszony rozpad jąder atomowych napotykanych w ziemskiej atmosferze. Promieniowanie kosmiczne jest odpowiedzialne za syntezę nuklidów Li, Be, B które nie powstają podczas nukleosyntezy w gwiazdach oraz za powstawanie niektórych cięższych jąder (np. węgla-14).

    Bozon W (wuon) – cząstka elementarna pośrednicząca w oddziaływaniach słabych, wymieniana przez elektrony, neutrina i inne cząstki oddziałujące oddziaływaniem słabym podczas zderzeń. Cząstka ta występuje w dwóch podstawowych postaciach: cząstki W i jej antycząstki W. Obie mają ten sam spin (równy 1) oraz masę, różnią się tylko ładunkiem elektrycznym.Spalacja lub kruszenie (kruszenie jądra atomowego; ang. spallation) to w fizyce jądrowej proces, w którym ciężkie jądro atomowe emituje kilka nukleonów w wyniku zderzenia (bombardowania) protonami o bardzo dużej energii (większej od setek keV). W wyniku tego procesu masa atomowa bombardowanego jądra zmniejsza się.

    Zobacz też[]

  • kontrolowana synteza termojądrowa
  • pierwotna nukleosynteza
  • ITER - projekt międzynarodowego reaktora termojądrowego
  • broń termojądrowa



  • w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Jądro atomowe – konglomerat cząstek elementarnych będący centralną częścią atomu zbudowany z jednego lub więcej protonów i neutronów, zwanych nukleonami. Jądro stanowi niewielką część objętości całego atomu, jednak to w jądrze skupiona jest prawie cała masa. Przemiany jądrowe mogą prowadzić do wyzwolenia ogromnych ilości energii. Niewłaściwe ich wykorzystanie może stanowić zagrożenie.
    Cykl protonowy (cykl proton-proton, łańcuch pp) – cykl reakcji jądrowych, w których z czterech jąder wodoru powstaje stabilne jądro helu. Ponadto podczas przemian uwalniana jest energia jądrowa, która jest głównym źródłem energii Słońca i innych niezbyt masywnych gwiazd. Cykl pp zachodzi w jądrach gwiazd o temperaturze od kilku do kilkunastu milionów kelwinów. Został zaproponowany przez Hansa Bethe i Charlesa Critchfielda.
    Oddziaływanie słabe jest jednym z czterech oddziaływań uznanych za podstawowe. Przenoszone jest za pomocą jednej z trzech masywnych cząstek: bozonów naładowanych (W i W) oraz bozonu neutralnego (Z). Jest odpowiedzialne za rozpad beta i związaną z nim radioaktywność oraz za rozpad np. mionu i cząstek dziwnych. Siła oddziaływania słabego jest 10 razy mniejsza niż siła oddziaływania silnego. Jest zbyt słabe, by połączyć leptony w większe cząstki, tak jak oddziaływania silne łączą w hadronach kwarki.
    Zjawisko, fenomen (gr. phainomenon obserwowany) – pojęcie filozoficzne oznaczające to, co dane jest w poznaniu zmysłowym, a więc obrazy, dźwięki, zapachy, smaki itd.
    Femtometr (symbol: fm, fermi) – podwielokrotność metra, podstawowej jednostki długości w układzie SI. Jeden femtometr równa się 10 m. W notacji naukowej można go zapisać jako 1 E-15 m oznaczający 0,000 000 000 000 001 × 1 m.
    Pole magnetyczne – stan przestrzeni, w której siły działają na poruszające się ładunki elektryczne, a także na ciała mające moment magnetyczny niezależnie od ich ruchu. Pole magnetyczne, obok pola elektrycznego, jest przejawem pola elektromagnetycznego. W zależności od układu odniesienia, w jakim znajduje się obserwator, to samo zjawisko może być opisywane jako objaw pola elektrycznego, magnetycznego albo obu.
    Tryt (radiowodór) jest nietrwałym izotopem wodoru, którego jądro (tryton) składa się z jednego protonu i dwóch neutronów. Oznaczany jest symbolem H lub T.

    Reklama