• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Równanie



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Równanie całkowe – równanie funkcyjne, w którym występuje całka niewiadomej funkcji. Równania te, w zależności od tego, czy funkcja niewiadoma pojawia się ponadto sama, dzielą się na jednorodne i niejednorodne. Wyróżnia się ponadto kilka ich rodzajów na podstawie typu występujących w nim całek (ściślej granic tych całek). Funkcję szukaną często oznacza się ϕ ( x ) . {displaystyle phi (x).} Zadaniem jest znalezienie postaci funkcji na przedziale [ a , b ] . {displaystyle [a,b].} Wielomian – wyrażenie algebraiczne złożone ze zmiennych i stałych połączonych działaniami dodawania, odejmowania, mnożenia i podnoszenia do potęgi o stałym wykładniku naturalnym.

    Równanieforma zdaniowa postaci gdzie termami i przynajmniej jeden z nich zawiera pewną zmienną. Równanie jest więc formułą atomową z co najmniej jedną zmienną wolną. Term po lewej stronie znaku równości nazywa się lewą stroną równania, a term po prawej – prawą stroną równania. Szczególnym przypadkiem równania jest forma, w której jeden z termów jest stałą np. czyli gdy jest postaci

    Metoda eliminacji Gaussa – w algebrze liniowej algorytm rozwiązywania układów równań liniowych, obliczania rzędu macierzy, obliczania macierzy odwrotnej oraz obliczania wartości wyznacznika, wykorzystujący operacje elementarne; jego nazwa pochodzi od nazwiska matematyka niemieckiego Carla Friedricha Gaussa.Kwantyfikator – termin przyjęty w matematyce i logice matematycznej na oznaczenie zwrotów: dla każdego, istnieje takie i im pokrewnych, a także odpowiadającym im symbolom wiążacym zmienne w formułach. Są podstawowym elementem w rozwoju logiki pierwszego rzędu.

    Zmienne równania oznacza się zwykle symbolami literowymi i nazywa niewiadomymi.

    Spis treści

  • 1 Dziedzina i rozwiązania równania
  • 2 Przykłady
  • 3 Rodzaje
  • 4 Metody rozwiązywania
  • 5 Zobacz też
  • 6 Bibliografia


  • Podstrony: 1 [2] [3] [4]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Liczby całkowite – liczby naturalne dodatnie N + = { 1 , 2 , 3 , … } {displaystyle mathbb {N} _{+}={1,2,3,dots }} oraz liczby przeciwne do nich { − 1 , − 2 , − 3 , … } {displaystyle {-1,-2,-3,dots }} , a także liczba zero. Uogólnieniem liczb całkowitych są liczby wymierne i tym samym liczby rzeczywiste, szczególnym przypadkiem liczb całkowitych są: liczby naturalne.
    Równość – relacja, która jest relacją równoważności. Jest to zatem relacja zwrotna, przechodnia i symetryczna. Ważną cechą relacji równości a = b {displaystyle a=b} jest to, że dla dowolnej funkcji f {displaystyle f} zachodzi:
    Nierówność to, w uproszczeniu, stwierdzenie że jeden obiekt jest większy od drugiego, czyli dwa wyrażenia połączone relacją porządkującą:
    Zmienna – symbol, oznaczający wielkość, która może przyjmować rozmaite wartości. Wartości te na ogół należą do pewnego zbioru, który jest określony przez naturę rozważanego problemu. Zbiór ten nazywamy zakresem zmiennej.
    Liczby naturalne – liczby służące podawaniu liczności (trzy osoby, zob. liczebnik główny/kardynalny) i ustalania kolejności (trzecia osoba, zob. liczebnik porządkowy), poddane w matematyce dalszym uogólnieniom (odpowiednio: liczby kardynalne, liczby porządkowe). Badaniem własności liczb naturalnych zajmują się arytmetyka i teoria liczb. Według finitystów, zwolenników skrajnego nurtu filozofii matematyki, są to jedyne liczby, jakimi powinna zajmować się matematyka - słynne jest stwierdzenie propagatora arytmetyzacji wszystkich dziedzin matematyki Leopolda Kroneckera: Liczby całkowite stworzył dobry Bóg. Reszta jest dziełem człowieka.
    Równanie diofantyczne (od matematyka Diofantosa) to równanie, którego rozwiązania szuka się w zbiorze liczb całkowitych lub liczb naturalnych. Zwykle rozważa się równania diofantyczne o dwóch lub więcej niewiadomych – równania z jedną niewiadomą dają się rozwiązać metodami algebraicznymi.
    Miejsce zerowe – w matematyce argument funkcji, dla którego przyjmuje ona wartość zerową. Czasem miejsce zerowe nazywa się w skrócie zerem funkcji bądź jej pierwiastkiem.

    Reklama