• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Punkt - geometria

    Przeczytaj także...
    Przestrzeń euklidesowa – przestrzeń o geometrii euklidesowej. Jest ona naturalnym elementem modeli świata rzeczywistego (łac. geometria = mierzenie ziemi) i stanowi dobre przybliżenie przestrzeni fizycznych w warunkach makroskopowych, jednak nie nadaje się do opisu rzeczywistości w bardzo małych, atomowych, lub bardzo wielkich, astronomicznych, wielkościach. Jednowymiarowa przestrzeń euklidesowa nazywana jest prostą euklidesową, zaś dwuwymiarowa – płaszczyzną euklidesową. Przestrzenie te nazywa się również przestrzeniami afinicznymi euklidesowymi w odróżnieniu od przestrzeni liniowych euklidesowych, znanych szerzej jako przestrzenie unitarne.Linia prosta lub prosta – jedno z podstawowych pojęć geometrii, szczególny przypadek nieograniczonej z obydwu stron krzywej o nieskończonym promieniu krzywizny w każdym punkcie.
    Okrąg – brzeg koła; zbiór wszystkich punktów płaszczyzny euklidesowej odległych od ustalonego punktu, nazywanego środkiem, o zadaną odległość, nazywaną promieniem.
    Zobrazeni bod.svg

    Punkt – w najogólniejszym ujęciu – to element pewnego zbioru. Np. w zbiorze liczb punktem będzie liczba, w zbiorze samochodów punktem będzie jakiś samochód. Punkt – rozważany w geometrii – to bezwymiarowy obiekt geometryczny; pojęcie punktu stanowi jedno z podstawowych pojęć geometrii; punkt ma zerowe rozmiary, dwa punkty mogą więc różnić się tylko położeniem. Punkty zaznacza się na rysunku jako × (krzyżyk), kółko lub kropkę i tradycyjnie oznacza wielkimi literami alfabetu łacińskiego (A, B, C).

    Geometria hiperboliczna (zwana także geometrią siodła, geometrią Łobaczewskiego lub geometrią Bolyaia-Łobaczewskiego) – jedna z geometrii nieeuklidesowych.Alfabet łaciński, łacinka, alfabet rzymski – alfabet, system znaków służących do zapisu większości języków europejskich oraz wielu innych. Jest najbardziej rozpowszechnionym alfabetem na świecie – posługuje się nim ok. 35% ludzkości. Wywodzi się z systemu służącego do zapisu łaciny.
    Point A.svg

    Pojęcie pierwotne[]

    Punkt jest w przestrzeni euklidesowej pojęciem pierwotnym, co oznacza, że nie jest definiowany z użyciem formalizmu matematycznego. Podobnie jest on pojęciem pierwotnym geometrii Riemanna i geometrii Łobaczewskiego.

    Istnieją jednak przestrzenie matematyczne, w którym punkt może zostać zdefiniowany. Przykładowo nakładając na przestrzeń euklidesową kartezjański układ współrzędnych, możemy w tak powstałej przestrzeni kartezjańskiej zdefiniować punkt jako parę uporządkowaną (przy większej liczbie wymiarów krotkę) liczb rzeczywistych.

    Czasoprzestrzeń Minkowskiego – przestrzeń liniowa w fizyce i matematyce, która łącząc czas z przestrzenią trówymiarową umożliwia formalny zapis równań szczególnej teorii względności Einsteina. Nazwę zawdzięcza niemieckiemu matematykowi Hermannowi Minkowskiemu, który opisał ją w 1907.Euklides z Aleksandrii (gr. Εὐκλείδης, Eukleides, ur. ok. 365 r. p.n.e., zm. ok. 300 r. p.n.e.) – matematyk grecki pochodzący z Aten, przez większość życia działający w Aleksandrii.

    Definicja Euklidesa[]

    Pierwszą próbę opisania pojęcia punktu podjął Euklides: Punkt to jest to, co nie składa się z części (czego nie można rozłożyć na części). Dla Euklidesa punkt jest „miejscem” bez wymiarów, co oddał w swoich postulatach czy twierdzeniach. Na przykład: „dwie proste przecinają się w punkcie...”, „z punktu można zakreślić okrąg...”. Zwykle jednak słowa „punkt” używa się jedynie w odniesieniu do elementów przestrzeni euklidesowej, lub innych przestrzeni geometrycznych (np. wspomniane już przestrzeń Riemanna, przestrzeń Łobaczewskiego, przestrzeń Minkowskiego).

    Zobacz też[]

  • wzór na odległość punktu od prostej
  • prosta
  • okrąg
  • Pojęcie pierwotne – obiekt w teorii sformalizowanej, o którym mówi ona w swych aksjomatach, konstruując wypowiedzi (twierdzenia) zgodnie z przyjętymi w tej teorii regułami wnioskowania. Pojęcia pierwotnego nie definiuje się językiem teorii, tylko podaje się definicję znaczeniową; przez podanie informacji (lub wymagań) o relacjach, w których występuje.Układ współrzędnych kartezjańskich (prostokątny) – prostoliniowy układ współrzędnych o parach prostopadłych osi. Nazwa pojęcia pochodzi od łacińskiego nazwiska francuskiego matematyka i filozofa Kartezjusza (wł. René Descartes), który wprowadził te idee w 1637 w traktacie La Géométrie, (wcześniej układ taki stosował, choć nie rozpropagował go, Pierre de Fermat).



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Zbiór – pojęcie pierwotne teorii zbiorów (znanej szerzej jako teoria mnogości; za jej twórcę uważa się Georga Cantora) leżące u podstaw całej matematyki; intuicyjnie jest to nieuporządkowany zestaw różnych obiektów, czy też kolekcja niepowtarzających się komponentów bez wyróżnionej kolejności.
    Zbiór liczb rzeczywistych – uzupełnienie zbioru liczb wymiernych. Zbiór liczb rzeczywistych zawiera m.in. liczby naturalne, ujemne, całkowite, pierwiastki liczb dodatnich, wymierne, niewymierne, przestępne, itd. Z drugiej strony na liczby rzeczywiste można też patrzeć jak na szczególne przypadki liczb zespolonych.
    Rozmaitość riemannowska bądź przestrzeń Riemanna - nazwana od nazwiska Bernharda Riemanna rzeczywista rozmaitość różniczkowa (M, g), dla której zdefiniowany jest tensor metryczny g, oraz istnieje funkcja d(x,y) określająca najkrótszą możliwą odległość jako rzeczywistą nieujemną wartość, będąca kresem dolnym zbioru odległości po wszystkich krzywych przechodzących jednocześnie przez dwa zadane punkty x i y.
    Wymiar, w intuicyjnym znaczeniu, to minimalna liczba niezależnych parametrów potrzebnych do opisania jakiegoś zbioru. Zatem jest to liczba przypisana zbiorowi lub przestrzeni w taki sposób, by punkt miał w.=0, prosta w.=1, płaszczyzna w.=2 itd.
    Definicja intuicyjna: Tensor – uogólnienie pojęcia wektora; wielkość, której własności pozostają identyczne niezależnie od wybranego układu współrzędnych.
    Geometria (gr. γεωμετρία; geo – ziemia, metria – miara) – dziedzina matematyki badająca dla wybranych przekształceń ich niezmienniki, od najprostszych, takich jak odległość, pole powierzchni, miara kąta, przez bardziej zaawansowane, jak krzywizna, punkt stały, czy wymiar. W zależności od rodzaju przekształceń mówi się o różnych rodzajach geometrii.

    Reklama