• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Przestrzeń zdarzeń elementarnych



    Podstrony: 1 [2] [3]
    Przeczytaj także...
    W teorii prawdopodobieństwa, doświadczeniem losowym nazywa się procedurę, którą można wielokrotnie powtarzać i która ma określony zbiór wyników znany przestrzenią zdarzeń elementarnych. O doświadczeniu mówimy, że jest losowe, jeżeli ma więcej niż jeden możliwy wynik; gdy doświadczenie ma tylko jeden wynik, to mówimy, że jest deterministyczne. Doświadczenie losowe, który ma dokładnie dwa różne możliwe wyniki nazywa się próbą Bernouliego.Intuicyjnie, zdarzenie losowe to pewien zbiór możliwych wyników danego eksperymentu. Może to być zarówno zbiór składający się z pojedynczego wyniku, jak i zbiór złożony z większej ilości elementów. Zdarzenia losowe rozważa się w rachunku prawdopodobieństwa.

    Przestrzeń zdarzeń elementarnych (zbiór zdarzeń elementarnych, przestrzeń próbek losowych) - to zbiór wszystkich możliwych wyników doświadczenia losowego; wyniki te nazywa się zdarzeniami elementarnymi.

    Pojęcie zbioru zdarzeń elementarnych należy do podstawowych w rachunku prawdopodobieństwa.Tradycyjnie zbiór ten oznacza się litrą .

    Teoria prawdopodobieństwa (także rachunek prawdopodobieństwa lub probabilistyka) – dział matematyki zajmujący się zdarzeniami losowymi. Rachunek prawdopodobieństwa zajmuje się badaniem abstrakcyjnych pojęć matematycznych stworzonych do opisu zjawisk, które nie są deterministyczne: zmiennych losowych w przypadku pojedynczych zdarzeń oraz procesów stochastycznych w przypadku zdarzeń powtarzających się (w czasie). Jako matematyczny fundament statystyki, teoria prawdopodobieństwa odgrywa istotną rolę w sytuacjach, w których konieczna jest analiza dużych zbiorów danych. Jednym z największych osiągnięć fizyki dwudziestego wieku było odkrycie probabilistycznej natury zjawisk fizycznych w skali mikroskopijnej, co zaowocowało powstaniem mechaniki kwantowej.Przestrzeń probabilistyczna – struktura umożliwiająca modelowanie doświadczenia losowego poprzez wskazanie zdarzeń losowych i przypisanie im prawdopodobieństwa.

    Zbiór zdarzeń elementarnych stanowi jeden z trzech elementów modelu probabilistycznego opisującego dane doświadczenie losowe. Pozostałymi elementami są: zbiór zdarzeń losowych (tj. mierzalnych podzbiorów , które tworzą tzw. σ-ciało) oraz miara probabilistyczna (prawdopodobieństwo) przypisana do każdego zdarzenia losowego.

    Miara – rozważana w matematyce funkcja służąca określeniu „wielkości” zbiorów poprzez przypisanie im pewnej nieujemnej liczby.Zbiór – pojęcie pierwotne teorii zbiorów (znanej szerzej jako teoria mnogości; za jej twórcę uważa się Georga Cantora) leżące u podstaw całej matematyki; intuicyjnie jest to nieuporządkowany zestaw różnych obiektów, czy też kolekcja niepowtarzających się komponentów bez wyróżnionej kolejności.

    Zbiór zdarzeń elementarnych uzupełniony o σ-ciało tworzy parę zwaną przestrzenią mierzalną. Przestrzeń mierzalna uzupełniona o miarę probabilistyczną tworzy trójkę zwaną przestrzenią probabilistyczną.

    Wydawnictwo Naukowe PWN SA – wydawnictwo z siedzibą w Warszawie, założone w 1951, w obecnej formie prawnej działające od 1997. Wydawnictwo Naukowe PWN SA stanowi jednostkę dominującą Grupy kapitałowej PWN, w skład której wchodzi kilkanaście przedsiębiorstw, głównie wydawnictw.

    Pomiędzy zdarzeniami elementarnymi a zdarzeniami losowymi istnieje istotna różnica: pierwsze są pojedynczymi elementami zbioru zdarzeń elementarnych (czyli ), natomiast drugie są podzbiorami zbioru zdarzeń elementarnych - mogą więc zawierać wiele zdarzeń elementarnych, np. zdarzenie .

    Podstrony: 1 [2] [3]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Reklama

    Czas generowania strony: 0.029 sek.