• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Przestrzeń unormowana



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Przestrzeń euklidesowa – przestrzeń o geometrii euklidesowej. Jest ona naturalnym elementem modeli świata rzeczywistego (łac. geometria = mierzenie ziemi) i stanowi dobre przybliżenie przestrzeni fizycznych w warunkach makroskopowych, jednak nie nadaje się do opisu rzeczywistości w bardzo małych, atomowych, lub bardzo wielkich, astronomicznych, wielkościach. Jednowymiarowa przestrzeń euklidesowa nazywana jest prostą euklidesową, zaś dwuwymiarowa – płaszczyzną euklidesową. Przestrzenie te nazywa się również przestrzeniami afinicznymi euklidesowymi w odróżnieniu od przestrzeni liniowych euklidesowych, znanych szerzej jako przestrzenie unitarne.Przekształcenie liniowe – w algebrze liniowej funkcja między przestrzeniami liniowymi (nad ustalonym ciałem) zachowująca ich strukturę; z punktu widzenia algebry jest to zatem homomorfizm (a z punktu widzenia teorii kategorii – morfizm kategorii) przestrzeni liniowych nad ustalonym ciałem. W przypadku przestrzeni skończonego wymiaru z ustalonymi bazami do opisu przekształceń liniowych między nimi stosuje się zwykle macierze (zob. wybór baz).

    Przestrzeń unormowanaprzestrzeń liniowa, w której określono pojęcie normy będące bezpośrednim uogólnieniem pojęcia długości (modułu) wektora w przestrzeni euklidesowej.

    Przestrzeń topologiczna – podstawowe pojęcie topologii; zbiór wyposażony w strukturę (tzw. topologię) wyróżniającą pewną rodzinę jego podzbiorów (tzw. zbiory otwarte), co umożliwia określenie czy dany punkt leży „blisko”, czy „daleko” od danego podzbioru (w jego domknięciu lub poza nim) mimo braku pojęcia odległości (metryki).Przestrzeń metryczna – zbiór z zadaną na nim metryką, tj. funkcją, która określa odległość między każdą parą elementów tego zbioru.

    Przestrzenie unormowane pojawiają się w naturalny sposób w analizie matematycznej oraz innych działach matematyki takich jak, na przykład, rachunek prawdopodobieństwa czy równania różniczkowe. Szczególnie istotne z punktu widzenia szeroko pojętych zastosowań są przestrzenie Banacha, tzn. przestrzenie unormowane mające pewną szczególną własność związaną z ich strukturą metryczną: zupełność.

    Równoważność (lub: ekwiwalencja) – twierdzenie, w którym teza jest warunkiem koniecznym jak i dostatecznym przesłanki. To zdanie zapisuje się za pomocą spójnika wtedy i tylko wtedy, gdy.Forma liniowa albo funkcjonał liniowy (kowektor) – w algebrze liniowej przekształcenie liniowe danej przestrzeni liniowej w ciało jej skalarów, czyli funkcjonał, który jest liniowy, tj. addytywny i jednorodny. Pojęcie to uogólnia się bez zmian na przypadek modułów nad pierścieniami.

    Historycznie to właśnie pewne konkretne przestrzenie Banacha, które jako pierwsze pojawiły się w kręgu zainteresowań matematyków pierwszej połowy XX w., stały się podwaliną powstania abstrakcyjnej (aksjomatycznej) teorii przestrzeni unormowanych. Teoria przestrzeni unormowanych, a szczególnie teoria przestrzeni Banacha jest jedną z głównych gałęzi analizy funkcjonalnej.

    Przestrzeń Hilberta – w analizie funkcjonalnej rzeczywista lub zespolona przestrzeń unitarna (tj. przestrzeń liniowa nad ciałem liczb rzeczywistych lub zespolonych z abstrakcyjnym iloczynem skalarnym), zupełna ze względu na indukowaną (poprzez normę) z iloczynu skalarnego tej przestrzeni metrykę. Jako unormowana i zupełna, każda przestrzeń Hilberta jest przestrzenią Banacha, a przez to przestrzenią Frécheta, a stąd lokalnie wypukłą przestrzenią liniowo-topologiczną. Przestrzenie te noszą nazwisko Davida Hilberta, który wprowadził je pod koniec XIX wieku; są one podstawowym narzędziem wykorzystywanym w wielu dziedzinach fizyki, m.in. w mechanice kwantowej (np. przestrzeń Foka nad przestrzenią Hilberta).Przestrzeń liniowo-topologiczna lokalnie wypukła – przestrzeń liniowo-topologiczna, która ma bazę lokalną złożoną ze zbiorów wypukłych. Ze względu na dobre własności jest to ważna klasa przestrzeni liniowo-topologicznych rozważanych w analizie funkcjonalnej.


    Podstrony: 1 [2] [3] [4]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Przestrzeń liniowa lub wektorowa – w matematyce zbiór obiektów (nazywanych "wektorami"), które mogą być, nieformalnie rzecz ujmując, skalowane i dodawane. Formalnie jest to zbiór z określonymi dwoma działaniami: dodawaniem elementów tej przestrzeni (wektorów) i mnożeniem przez elementy ustalonego ciała, które związane są ze sobą poniższymi aksjomatami. Przestrzenie liniowe to podstawowy obiekt badań algebry liniowej i analizy funkcjonalnej. Znajdują zastosowanie niemal we wszystkich gałęziach matematyki, naukach ścisłych i inżynierii.
    Izometria (gr. isos – równy, métron – miara; także przekształcenie izometryczne, izomorfizm izometryczny) – funkcja zachowująca odległości między punktami przestrzeni metrycznej. W geometrii figury między którymi istnieje izometria (są izometryczne) nazywne są przystającymi.
    Teoria prawdopodobieństwa (także rachunek prawdopodobieństwa lub probabilistyka) – dział matematyki zajmujący się zdarzeniami losowymi. Rachunek prawdopodobieństwa zajmuje się badaniem abstrakcyjnych pojęć matematycznych stworzonych do opisu zjawisk, które nie są deterministyczne: zmiennych losowych w przypadku pojedynczych zdarzeń oraz procesów stochastycznych w przypadku zdarzeń powtarzających się (w czasie). Jako matematyczny fundament statystyki, teoria prawdopodobieństwa odgrywa istotną rolę w sytuacjach, w których konieczna jest analiza dużych zbiorów danych. Jednym z największych osiągnięć fizyki dwudziestego wieku było odkrycie probabilistycznej natury zjawisk fizycznych w skali mikroskopijnej, co zaowocowało powstaniem mechaniki kwantowej.
    Norma operatorowa – norma w przestrzeni operatorów liniowych i ciągłych między dwiema ustalonymi przestrzeniami unormowanymi. Jeżeli X i Y są przestrzeniami unormowanymi to wzór
    Nierówność trójkąta – twierdzenie matematyczne mówiące, że dla dowolnego trójkąta miara jednego boku musi być mniejsza lub równa sumie miar dwóch pozostałych, ale większa lub równa od różnicy ich miar. W obu przypadkach równości zachodzą dla trójkątów zdegenerowanych, czyli mających postać odcinka: jeden kąt ma wówczas 180°, dwa pozostałe 0°.
    Funkcja rzeczywista – funkcja, której przeciwdziedzina jest podzbiorem zbioru liczb rzeczywistych. Inaczej mówiąc jest to funkcja o wartościach rzeczywistych.
    Funkcja „na” a. surjekcja pisane też czasami jako suriekcja – funkcja przyjmująca jako swoje wartości wszystkie elementy przeciwdziedziny, tj. której obraz jest równy przeciwdziedzinie.

    Reklama

    Czas generowania strony: 0.031 sek.