• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Przestrzeń topologiczna



    Podstrony: [1] [2] [3] 4 [5] [6] [7]
    Przeczytaj także...
    Moc zbioru – własność zbioru, która opisuje jego liczebność. Nieformalnie, moc zbioru jest tym większa im większy jest zbiór. Pojęcie mocy zbioru opiera się na pojęciu równoliczności dwóch zbiorów – zbiory A i B są równoliczne, gdy każdy element zbioru A można połączyć w parę z dokładnie jednym elementem zbioru B, innymi słowy istnieje bijekcja (funkcja różnowartościowa i "na") między zbiorami A i B. Zbiory równoliczne mają tę samą moc. Moce zbiorów są konkretnymi obiektami matematycznymi, nazywanymi liczbami kardynalnymi.Brzeg – pojęcie topologiczno-geometryczne oddające i formalizujące intuicję punktów „granicznych” danego zbioru, czy figury, czy też „ograniczających” je.
    Klasyfikacja[]
     Osobny artykuł: niezmiennik topologiczny.

    Przestrzenie można sklasyfikować według istnienia między nimi homeomorfizmu - te, między którymi istnieje homeomorfizm, są topologicznie nieodróżnialne, te, między którymi nie istnieje żaden homeomorfizm, są topologicznie odmienne. Aby udowodnić, że dwie przestrzenie nie są homeomorficzne wystarczy wskazać jakiś niezmiennik, który posiada tylko jedna z nich. Przykładami takich niezmienników są m.in. spójność, zwartość, ośrodkowość (lecz nie zupełność, która jest niezmiennikiem metrycznym), czy różne aksjomaty oddzielania.

    Przestrzeń ośrodkowa to przestrzeń topologiczna, która zawiera przeliczalny podzbiór gęsty (czasem zwany ośrodkiem).Przestrzeń metryczna – zbiór z zadaną na nim metryką, tj. funkcją, która określa odległość między każdą parą elementów tego zbioru.

    Struktury algebraiczne[]

    Dla dowolnego obiektu algebraicznego można wprowadzić topologię dyskretną, w której działania algebraiczne są funkcjami ciągłymi. W każdej takiej strukturze, która nie jest skończona, istnieje często topologia naturalna, zgodna z działaniami algebraicznymi w tym sensie, że dalej są one ciągłe. Prowadzi to do takich pojęć jak grupy topologiczne, przestrzenie liniowo-topologiczne, pierścienie topologiczne, czy ciała lokalne.

    Topologia ilorazowa – dla danej przestrzeni topologicznej oraz relacji równoważności na niej określonej, najsłabsza (mająca możliwie najmniej zbiorów otwartych) topologia na przestrzeni ilorazowej względem której odwzorowanie, przyporządkowujące danemu punktowi przestrzeni jego klasę abstrakcji, jest ciągłe. Szczególne przypadki topologii ilorazowych badali po raz pierwszy Robert Lee Moore oraz Paweł Aleksandrow.Podzbiór – pewna „część” danego zbioru, czyli dla danego zbioru, nazywanego nadzbiorem, zbiór składający się z pewnej liczby jego elementów, np. żadnego, jednego, wszystkich. Pierwszy przypadek nazywa się podzbiorem pustym, drugi – podzbiorem jednoelementowym lub singletonem, trzeci – podzbiorem niewłaściwym.

    Przypadki szczególne i uogólnienia[]

    Następujące przestrzenie i algebry są przypadkami szczególnymi lub ogólnymi przedstawionych wyżej przestrzeni topologicznych:

  • przestrzeń z bliskością dostarcza pojęcia bliskości dwóch zbiorów,
  • przestrzeń metryczna daje precyzyjne pojęcie odległości między dwoma punktami,
  • przestrzeń jednostajna aksjomatyzuje porządek odległości między różnymi punktami,
  • przestrzeń Cauchy'ego jest aksjomatyzacją możliwości sprawdzenia, czy dany ciąg uogólniony jest Cauchy'ego; dają one możliwość badania uzupełnień,
  • przestrzenie ze zbieżnością ujmują pewne cechy zbieżności filtrów,
  • σ-algebra oparta na pojęciu zbioru mierzalnego.
  • Kazimierz Kuratowski (ur. 2 lutego 1896 w Warszawie, zm. 18 czerwca 1980 w Warszawie), polski matematyk, jeden z czołowych przedstawicieli warszawskiej szkoły matematycznej.Algebra ogólna – obiekt matematyczny będący przedmiotem badań algebry uniwersalnej. Czasami algebra uniwersalna nazywana jest algebrą ogólną, wówczas rozważane w niej obiekty nazywa się zwykle algebrami abstrakcyjnymi lub po prostu algebrami.


    Podstrony: [1] [2] [3] 4 [5] [6] [7]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Topologia (gr. tópos – miejsce, okolica; lógos – słowo, nauka) – jeden z najważniejszych kierunków w matematyce współczesnej. Obiektem jej badań są te własności figur geometrycznych i brył, które nie ulegają zmianie nawet po radykalnym zdeformowaniu tych figur (a więc np. położenie i sąsiedztwo). Własności takie nazywa się własnościami topologicznymi figury.
    Ryszard Engelking, prof. (ur. 1935 w Sosnowcu) – polski matematyk specjalizujący się w topologii, szczególnie w teorii wymiaru. Autor wielu książek i publikacji z tego zakresu, w tym Topologii ogólnej (przetłumaczonej na angielski), która jest klasyczną pozycją literatury przedmiotu. Ponadto tłumacz literatury francuskiej.
    Relacja równoważności – zwrotna, symetryczna i przechodnia relacja dwuargumentowa określona na pewnym zbiorze utożsamiająca ze sobą w pewien sposób jego elementy, co ustanawia podział tego zbioru na rozłączne podzbiory według tej relacji. Podobnie każdy podział zbioru niesie ze sobą informację o pewnej relacji równoważności.
    Miotełka Knastera-Kuratowskiego (lub miotełka Kuratowskiego) – przykład punktokształtnej spójnej przestrzeni topologicznej, która po usunięciu pewnego punktu jest (jako podprzestrzeń) dziedzicznie niespójna, ale nie całkowicie niespójna. Przestrzeń ta została skonstruowana w 1921 przez Kazimierza Kuratowskiego i Bronisława Knastera.
    Prostą Sorgenfreya (lub prosta z topologią strzałki) - zbiór liczb rzeczywistych z topologią, wprowadzoną przez bazę postaci:
    Dopełnienie zbioru – intuicyjnie, zbiór wszystkich elementów (pewnego ustalonego nadzbioru), które do danego zbioru nie należą. W niektórych pozycjach można spotkać się również z alternatywną nazwą uzupełnienie zbioru.
    Przestrzeń antydyskretna – w topologii niepusta przestrzeń topologiczna wyposażona w topologię nazywaną antydyskretną bądź trywialną, tzn. zawierającą wyłącznie dwa podzbiory: zbiór pusty i całą przestrzeń; w ten sposób topologia trywialna zawiera najmniejszą możliwą liczbę zbiorów otwartych wymaganą przez definicję przestrzeni topologicznej: za jej przeciwieństwo można uważać przestrzeń dyskretną, w której dowolny zbiór jest otwarty.

    Reklama

    Czas generowania strony: 0.06 sek.