• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Przestrzeń liniowa



    Podstrony: [1] [2] [3] [4] 5 [6]
    Przeczytaj także...
    Mnożenie przez skalar − jedno z działań dwuargumentowych definiujących przestrzeń liniową w algebrze liniowej (lub ogólniej: moduł w algebrze ogólnej). Mnożenia wektora przez skalar dającego w wyniku wektor nie należy mylić z iloczynem skalarnym (nazywanym niekiedy iloczynem wewnętrznym) dwóch wektorów dającym w wyniku skalar.Przestrzeń euklidesowa – przestrzeń o geometrii euklidesowej. Jest ona naturalnym elementem modeli świata rzeczywistego (łac. geometria = mierzenie ziemi) i stanowi dobre przybliżenie przestrzeni fizycznych w warunkach makroskopowych, jednak nie nadaje się do opisu rzeczywistości w bardzo małych, atomowych, lub bardzo wielkich, astronomicznych, wielkościach. Jednowymiarowa przestrzeń euklidesowa nazywana jest prostą euklidesową, zaś dwuwymiarowa – płaszczyzną euklidesową. Przestrzenie te nazywa się również przestrzeniami afinicznymi euklidesowymi w odróżnieniu od przestrzeni liniowych euklidesowych, znanych szerzej jako przestrzenie unitarne.
    Przypisy
    1. Wektory te są liniowo niezależne
    2. Blass, Andreas. Existence of bases implies the axiom of choice. Axiomatic set theory (Boulder, Colo., 1983), 31–33, Contemp. Math., 31, Amer. Math. Soc., Providence, RI, 1984.
    3. nad ciałem liczb rzeczywistych bądź zespolonych
    4. Zakłada się dodatkowo, by przestrzeń topologiczna spełniała pierwszy aksjomat oddzielania
    5. W sensie topologii produktowej odpowiednio w: i
    Moc zbioru – własność zbioru, która opisuje jego liczebność. Nieformalnie, moc zbioru jest tym większa im większy jest zbiór. Pojęcie mocy zbioru opiera się na pojęciu równoliczności dwóch zbiorów – zbiory A i B są równoliczne, gdy każdy element zbioru A można połączyć w parę z dokładnie jednym elementem zbioru B, innymi słowy istnieje bijekcja (funkcja różnowartościowa i "na") między zbiorami A i B. Zbiory równoliczne mają tę samą moc. Moce zbiorów są konkretnymi obiektami matematycznymi, nazywanymi liczbami kardynalnymi.Przekształcenie liniowe – w algebrze liniowej funkcja między przestrzeniami liniowymi (nad ustalonym ciałem) zachowująca ich strukturę; z punktu widzenia algebry jest to zatem homomorfizm (a z punktu widzenia teorii kategorii – morfizm kategorii) przestrzeni liniowych nad ustalonym ciałem. W przypadku przestrzeni skończonego wymiaru z ustalonymi bazami do opisu przekształceń liniowych między nimi stosuje się zwykle macierze (zob. wybór baz).


    Podstrony: [1] [2] [3] [4] 5 [6]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Przestrzeń topologiczna – podstawowe pojęcie topologii; zbiór wyposażony w strukturę (tzw. topologię) wyróżniającą pewną rodzinę jego podzbiorów (tzw. zbiory otwarte), co umożliwia określenie czy dany punkt leży „blisko”, czy „daleko” od danego podzbioru (w jego domknięciu lub poza nim) mimo braku pojęcia odległości (metryki).
    Lemat Kuratowskiego-Zorna – twierdzenie teorii mnogości, nazywane zwyczajowo lematem, dające pewien warunek dostateczny istnienia elementu maksymalnego w danym zbiorze częściowo uporządkowanym; znajduje ono wiele zastosowań w pozostałych działach matematyki, gdzie wykorzystywane jest w dowodach istnienia różnych obiektów (gdy szukany element, którego istnienie jest postulowane, jest maksymalnym w pewnym zbiorze z częściowym porządkiem).
    Wielomian – wyrażenie algebraiczne złożone ze zmiennych i stałych połączonych działaniami dodawania, odejmowania, mnożenia i podnoszenia do potęgi o stałym wykładniku naturalnym.
    Przestrzeń metryczna – zbiór z zadaną na nim metryką, tj. funkcją, która określa odległość między każdą parą elementów tego zbioru.
    Łączność – jedna z własności działań dwuargumentowych, czyli np. operatorów arytmetycznych. Pojęcie to występuje w dwóch znaczeniach.
    Podzbiór – pewna „część” danego zbioru, czyli dla danego zbioru, nazywanego nadzbiorem, zbiór składający się z pewnej liczby jego elementów, np. żadnego, jednego, wszystkich. Pierwszy przypadek nazywa się podzbiorem pustym, drugi – podzbiorem jednoelementowym lub singletonem, trzeci – podzbiorem niewłaściwym.
    Mechanika kwantowa (teoria kwantów) – teoria praw ruchu obiektów świata mikroskopowego. Poszerza zakres mechaniki na odległości czasoprzestrzenne i energie, dla których przewidywania mechaniki klasycznej nie sprawdzały się. Opisuje przede wszystkim obiekty o bardzo małych masach i rozmiarach - np. atom, cząstki elementarne itp. Jej granicą dla średnich rozmiarów lub średnich energii czy pędów jest mechanika klasyczna.

    Reklama

    Czas generowania strony: 0.049 sek.