• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Przestrzeń liniowa



    Podstrony: 1 [2] [3] [4] [5] [6]
    Przeczytaj także...
    Mnożenie przez skalar − jedno z działań dwuargumentowych definiujących przestrzeń liniową w algebrze liniowej (lub ogólniej: moduł w algebrze ogólnej). Mnożenia wektora przez skalar dającego w wyniku wektor nie należy mylić z iloczynem skalarnym (nazywanym niekiedy iloczynem wewnętrznym) dwóch wektorów dającym w wyniku skalar.Przestrzeń euklidesowa – przestrzeń o geometrii euklidesowej. Jest ona naturalnym elementem modeli świata rzeczywistego (łac. geometria = mierzenie ziemi) i stanowi dobre przybliżenie przestrzeni fizycznych w warunkach makroskopowych, jednak nie nadaje się do opisu rzeczywistości w bardzo małych, atomowych, lub bardzo wielkich, astronomicznych, wielkościach. Jednowymiarowa przestrzeń euklidesowa nazywana jest prostą euklidesową, zaś dwuwymiarowa – płaszczyzną euklidesową. Przestrzenie te nazywa się również przestrzeniami afinicznymi euklidesowymi w odróżnieniu od przestrzeni liniowych euklidesowych, znanych szerzej jako przestrzenie unitarne.
    Przestrzeń liniowa to zbiór obiektów (nazywanych wektorami), które mogą być skalowane i dodawane.

    Przestrzeń liniowa lub wektorowazbiór obiektów (nazywanych "wektorami"), które mogą być skalowane i dodawane. Formalnie jest to zbiór z określonymi dwoma działaniami: dodawaniem elementów tej przestrzeni (wektorów) i mnożeniem przez elementy ustalonego ciała, które związane są ze sobą poniższymi aksjomatami. Przestrzenie liniowe to podstawowy obiekt badań algebry liniowej i analizy funkcjonalnej. Znajdują zastosowanie niemal we wszystkich gałęziach matematyki, naukach ścisłych i inżynierii.

    Moc zbioru – własność zbioru, która opisuje jego liczebność. Nieformalnie, moc zbioru jest tym większa im większy jest zbiór. Pojęcie mocy zbioru opiera się na pojęciu równoliczności dwóch zbiorów – zbiory A i B są równoliczne, gdy każdy element zbioru A można połączyć w parę z dokładnie jednym elementem zbioru B, innymi słowy istnieje bijekcja (funkcja różnowartościowa i "na") między zbiorami A i B. Zbiory równoliczne mają tę samą moc. Moce zbiorów są konkretnymi obiektami matematycznymi, nazywanymi liczbami kardynalnymi.Przekształcenie liniowe – w algebrze liniowej funkcja między przestrzeniami liniowymi (nad ustalonym ciałem) zachowująca ich strukturę; z punktu widzenia algebry jest to zatem homomorfizm (a z punktu widzenia teorii kategorii – morfizm kategorii) przestrzeni liniowych nad ustalonym ciałem. W przypadku przestrzeni skończonego wymiaru z ustalonymi bazami do opisu przekształceń liniowych między nimi stosuje się zwykle macierze (zob. wybór baz).

    Naturalnymi przykładami przestrzeni liniowych są dwu- i trójwymiarowe przestrzenie euklidesowe. Wektory w tych przestrzeniach utożsamiane są odpowiednio z parami i trójkami uporządkowanymi liczb rzeczywistych, reprezentowanymi często w postaci wektorów geometrycznych charakteryzowanych przez kierunek, zwrot oraz wartość, które zwykle przedstawia się jako strzałki. Wektory takie mogą być sumowane według reguły równoległoboku (dodawanie wektorów) lub mnożone przez liczby rzeczywiste (mnożenie przez skalar). Właściwości wektorów geometrycznych stanowią dobry intuicyjny model dla wektorów w bardziej abstrakcyjnych przestrzeniach liniowych, które nie mają interpretacji geometrycznej. Przykładem takiej przestrzeni jest np. zbiór wszystkich wielomianów o współczynnikach rzeczywistych.

    Przestrzeń topologiczna – podstawowe pojęcie topologii; zbiór wyposażony w strukturę (tzw. topologię) wyróżniającą pewną rodzinę jego podzbiorów (tzw. zbiory otwarte), co umożliwia określenie czy dany punkt leży „blisko”, czy „daleko” od danego podzbioru (w jego domknięciu lub poza nim) mimo braku pojęcia odległości (metryki).Lemat Kuratowskiego-Zorna – twierdzenie teorii mnogości, nazywane zwyczajowo lematem, dające pewien warunek dostateczny istnienia elementu maksymalnego w danym zbiorze częściowo uporządkowanym; znajduje ono wiele zastosowań w pozostałych działach matematyki, gdzie wykorzystywane jest w dowodach istnienia różnych obiektów (gdy szukany element, którego istnienie jest postulowane, jest maksymalnym w pewnym zbiorze z częściowym porządkiem).

    Spis treści

  • 1 Definicja
  • 1.1 Uwagi
  • 2 Podstawowe własności
  • 3 Podprzestrzeń liniowa i baza
  • 4 Przykłady
  • 5 Przekształcenia liniowe
  • 6 Iloczyn przestrzeni
  • 7 Uogólnienia
  • 8 Dodatkowe struktury
  • 9 Alternatywny zestaw aksjomatów
  • 10 Zobacz też
  • 11 Przypisy
  • Definicja[]

    Niech będzie ciałem (jakim są np. liczby rzeczywiste czy liczby zespolone), którego elementy nazywane będą skalarami, a ono samo – ciałem skalarów. Przestrzenią liniową bądź wektorową nad ciałem nazywa się zbiór z dwoma działaniami dwuargumentowymi:

    Wielomian – wyrażenie algebraiczne złożone ze zmiennych i stałych połączonych działaniami dodawania, odejmowania, mnożenia i podnoszenia do potęgi o stałym wykładniku naturalnym.Przestrzeń metryczna – zbiór z zadaną na nim metryką, tj. funkcją, która określa odległość między każdą parą elementów tego zbioru.
  • dodawaniem wektorów: oznaczanym , gdzie i
  • mnożeniem przez skalar: oznaczanym , gdzie oraz ,
  • które spełniają poniższe aksjomaty. Pierwsze cztery czynią z wektorów grupę abelową ze względu na dodawanie, kolejne dwa są prawami rozdzielności.

    Łączność – jedna z własności działań dwuargumentowych, czyli np. operatorów arytmetycznych. Pojęcie to występuje w dwóch znaczeniach.Podzbiór – pewna „część” danego zbioru, czyli dla danego zbioru, nazywanego nadzbiorem, zbiór składający się z pewnej liczby jego elementów, np. żadnego, jednego, wszystkich. Pierwszy przypadek nazywa się podzbiorem pustym, drugi – podzbiorem jednoelementowym lub singletonem, trzeci – podzbiorem niewłaściwym.
    1. Dodawanie wektorów jest łączne: Dla dowolnych zachodzi .
    2. Dodawanie wektorów jest przemienne: Dla dowolnych jest .
    3. Dodawanie wektorów ma element neutralny: Istnieje taki element , nazywany wektorem zerowym, że dla dowolnego .
    4. Dodawanie wektorów ma elementy przeciwne: Dla każdego istnieje element , nazywany wektorem przeciwnym do , taki, że .
    5. Mnożenie przez skalar jest rozdzielne względem dodawania wektorów: Dla każdego oraz jest .
    6. Mnożenie przez wektor jest rozdzielne względem dodawania skalarów: Dla każdych oraz zachodzi .
    7. Mnożenie przez skalar jest zgodne z mnożeniem skalarów: Dla dowolnych oraz jest .
    8. Mnożenie przez skalar ma element neutralny: Dla dowolnego jest , gdzie oznacza element neutralny mnożenia w .

    Uwagi[]

    Formalnie przestrzeń liniowa nad ciałem jest strukturą matematyczną , w której:

    Mechanika kwantowa (teoria kwantów) – teoria praw ruchu obiektów świata mikroskopowego. Poszerza zakres mechaniki na odległości czasoprzestrzenne i energie, dla których przewidywania mechaniki klasycznej nie sprawdzały się. Opisuje przede wszystkim obiekty o bardzo małych masach i rozmiarach - np. atom, cząstki elementarne itp. Jej granicą dla średnich rozmiarów lub średnich energii czy pędów jest mechanika klasyczna.Macierz przekształcenia liniowego – w algebrze liniowej macierz będąca wygodnym zapisem we współrzędnych przekształcenia liniowego dwóch skończenie wymiarowych przestrzeni liniowych nad tym samym ciałem z ustalonymi bazami. Dzięki temu, że mnożeniu macierzy oraz domnażaniu wektorów odpowiada składanie przekształceń i obliczanie wartości przekształcenia na wspomnianym wektorze, teoria macierzy staje się wygodnym językiem opisu przekształceń (w tym endomorfizmów) liniowych wyżej opisanych przestrzeni; jeśli nie wskazano żadnych baz, to każdą macierz o elementach z ciała można traktować jako przekształcenie liniowe między dwoma przestrzeniami współrzędnych.
  • jest grupą abelową (aksjomaty 1-4),
  • jest ciałem,
  • wyposażoną w działanie (wyżej nieoznaczane) spełniające aksjomaty 5-8.

    Ten artykuł zawiera pewne przykłady przestrzeni liniowych. W artykule „przestrzeń liniowa” znajdują się definicje używanych tutaj pojęć. Zapoznaj się również z: wymiar, baza.Szereg – konstrukcja umożliwiająca wykonanie uogólnionego dodawania przeliczalnej liczby składników. Przykładem znanego szeregu jest dychotomia Zenona z Elei

    Wyżej przedstawione aksjomaty stanowią definicję modułu (nad pierścieniem), w ten sposób przestrzeń liniową można zwięźle zdefiniować jako moduł nad ciałem (gdyż każde ciało jest pierścieniem; co więcej, wspomniany moduł jest wolny).

    Siódmy aksjomat nie opisuje łączności, gdyż obecne są w nim dwa różne działania: mnożenie przez skalar, , oraz mnożenie skalarów (z ciała), .

    Przestrzeń Hilberta – w analizie funkcjonalnej rzeczywista lub zespolona przestrzeń unitarna (tj. przestrzeń liniowa nad ciałem liczb rzeczywistych lub zespolonych z abstrakcyjnym iloczynem skalarnym), zupełna ze względu na indukowaną (poprzez normę) z iloczynu skalarnego tej przestrzeni metrykę. Jako unormowana i zupełna, każda przestrzeń Hilberta jest przestrzenią Banacha, a przez to przestrzenią Frécheta, a stąd lokalnie wypukłą przestrzenią liniowo-topologiczną. Przestrzenie te noszą nazwisko Davida Hilberta, który wprowadził je pod koniec XIX wieku; są one podstawowym narzędziem wykorzystywanym w wielu dziedzinach fizyki, m.in. w mechanice kwantowej (np. przestrzeń Foka nad przestrzenią Hilberta).Liniowa niezależność – w algebrze liniowej własność algebraiczna rodziny wektorów danej przestrzeni liniowej mówiąca, że żaden z nich nie może być zapisany jako kombinacja liniowa skończenie wielu innych wektorów ze zbioru. Rodzinę wektorów, która nie jest liniowo niezależna, nazywa się liniowo zależną.

    Niektóre źródła zawierają również dodatkowe dwa aksjomaty domkniętości:

    1. Przestrzeń jest zamknięta ze względu na dodawanie wektorów, jeżeli , to .
    2. Przestrzeń jest zamknięta ze względu na mnożenie przez skalar, jeżeli , to .

    Jednakże zwykle działanie definiuje się jako odwzorowanie o przeciwdziedzinie , co pociąga za sobą powyższe stwierdzenia i eliminuje potrzebę ich dodawania jako niezależnych aksjomatów. Aksjomaty domkniętości są niezbędne do określenia, czy dany podzbiór przestrzeni liniowej jest jej podprzestrzenią.

    Szereg Fouriera – w matematyce szereg pozwalający rozłożyć funkcję okresową, spełniającą warunki Dirichleta, na sumę funkcji trygonometrycznych. Nauka na temat szeregów Fouriera jest gałęzią analizy Fouriera. Szeregi Fouriera zostały wprowadzone w 1807 roku przez Josepha Fouriera w celu rozwiązania równania ciepła dla metalowej płyty. Doprowadziło to jednak do przewrotu w matematyce i wprowadzenia wielu nowych teorii. Dziś mają one wielkie znaczenie między innymi w fizyce, teorii drgań, przetwarzaniu sygnałów, obrazów (kompresja jpeg), a nawet w muzyce (kompresja mp3).Rozdzielność działań jest własnością pierścienia (a więc i ciała) określającą powiązanie dwóch operatorów: addytywnego (nazywanego zwykle dodawaniem) i multiplikatywnego (zwykle mnożenie).

    Wyrażenia postaci „”, gdzie oraz , ściśle rzecz ujmując są nieokreślone. Jednakże z powodu przemienności w ciele skalarów wyrażenia „” oraz „” traktuje się jako tożsame. Jeżeli przestrzeń liniowa jest algebrą nad ciałem , to dla oraz zachodzi , co usprawiedliwia traktowanie wyrażeń „” i „” jako reprezentacji tego samego wektora.

    Algebra nad ciałem a. algebra liniowa – w algebrze liniowej przestrzeń liniowa wyposażona w dwuliniowe (wewnętrzne) działanie dwuargumentowe, nazywane mnożeniem (wektorów), które czyni z niej pierścień (niekoniecznie łączny).Felix Hausdorff (ur. 8 listopada 1868 roku we Wrocławiu (wówczas Breslau), zm. 26 stycznia 1942 roku w Bonn) – niemiecki matematyk, jeden z twórców topologii.

    Symbol pomija się często dla działania mnożenia w ciele rezerwując go dla iloczynu skalarnego lub rezygnuje się z niego całkowicie, gdyż rodzaj mnożenia można zwykle jednoznacznie określić na podstawie rodzaju czynników.

    Ciąg – w matematyce pojęcie oddające intuicję ponumerowania, czy też uporządkowania elementów zbioru. W zależności od rodzaju elementów zbioru stosuje się różne nazwy: w przypadku liczb mówi się o ciągach liczbowych, bądź bardziej precyzyjnie, np. w przypadku zbioru liczb całkowitych, rzeczywistych czy zespolonych, ciąg nazywa się wtedy odpowiednio ciągiem całkowitoliczbowym, rzeczywistym i zespolonym. Jeśli elementami zbioru są funkcje, to ciąg nazywa się ciągiem funkcyjnym. Ciąg powstały poprzez wybranie elementów innego ciągu nazywa się podciągiem.Relacja równoważności – zwrotna, symetryczna i przechodnia relacja dwuargumentowa określona na pewnym zbiorze utożsamiająca ze sobą w pewien sposób jego elementy, co ustanawia podział tego zbioru na rozłączne podzbiory według tej relacji. Podobnie każdy podział zbioru niesie ze sobą informację o pewnej relacji równoważności.


    Podstrony: 1 [2] [3] [4] [5] [6]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Struktura matematyczna (także model, system semantyczny, model semantyczny, dziedzina, struktura pierwszego rzędu) - w matematyce zbiór obiektów matematycznych połączonych w pewien system.
    Działanie lub operacja – w matematyce i logice przyporządkowanie jednemu lub większej liczbie elementów nazywanych argumentami lub operandami elementu nazywanego wynikiem. Badaniem działań w ogólności zajmuje się dział nazywany algebrą uniwersalną, zbiory z choć jednym określonym na nim działaniem algebraicznym nazywa się algebrami ogólnymi (często krótko: algebrami), samą rodzinę działań określa się nazwą „sygnatura”.
    Aksjomat wyboru (ozn. AC od ang. Axiom of Choice) – jeden z aksjomatów teorii mnogości mówiący o możliwości skonstruowania zbioru (nazywanego selektorem) zawierającego dokładnie po jednym elemencie z każdego zbioru należącego do rodziny niepustych zbiorów rozłącznych.
    Moduł – struktura algebraiczna będąca uogólnieniem przestrzeni liniowej. Ponieważ grupy abelowe można postrzegać jako moduły nad pierścieniem liczb całkowitych, to teoria modułów znajduje zastosowanie w wielu działach algebry i innych dziedzinach matematyki.
    Aksjomat (postulat, pewnik) (gr. αξιωμα [aksíoma] – godność, pewność, oczywistość) – jedno z podstawowych pojęć logiki matematycznej. Od czasów Euklidesa uznawano, że aksjomaty to zdania przyjmowane za prawdziwe, których nie dowodzi się w obrębie danej teorii matematycznej. We współczesnej matematyce definicja aksjomatu jest nieco inna:
    Aksjomaty Zermelo-Fraenkela, w skrócie: aksjomaty ZF – powszechnie przyjmowany system aksjomatów zaproponowany przez Ernsta Zermelo w 1904 roku, który został później uzupełniony przez Abrahama Fraenkela.
    Pierścień – struktura formalizująca własności algebraiczne liczb całkowitych oraz arytmetyki modularnej; intuicyjnie zbiór, którego elementy mogą być bez przeszkód dodawane, odejmowane i mnożone, lecz niekoniecznie dzielone. Badanie pierścieni umożliwiło uogólnienie innych pojęć matematycznych takich, jak np. liczby pierwsze (przez ideały pierwsze), wielomiany, ułamki oraz rozwinięcie teorii podzielności i wskazania przy tym najogólniejszej struktury, w której możliwe jest stosowanie algorytmu Euklidesa (tzw. pierścień Euklidesa). Dział matematyki opisujący te struktury nazywa się teorią pierścieni.

    Reklama

    Czas generowania strony: 0.077 sek.