• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Przestrzeń euklidesowa



    Podstrony: [1] 2 [3] [4] [5] [6] [7]
    Przeczytaj także...
    Wartość bezwzględna a. moduł – dla danej liczby rzeczywistej wartość liczbowa nieuwzględniająca znaku liczby. Przykładowo Parser nie mógł rozpoznać (Nie można zapisać obrazu z wzorem w systemie plików.): 5Lotnictwo – ogół zagadnień związanych z wszelkiego rodzaju statkami powietrznymi, pojazdami zdolnymi do samodzielnego lotu w powietrzu.
    Grupa przekształceń obiektów geometrycznych[]

    W geometrii Euklidesa istnieją trzy zasadnicze przekształcenia płaszczyzny:

  • przesunięcie (translacja), polegające na przemieszczeniu wszystkich punktów płaszczyzny o tę samą odległość w ustalonym kierunku,
  • obrót wokół ustalonego punktu wszystkich punktów płaszczyzny,
  • odbicie wokół osi.
  • Dwie figury (tzn. podzbiory płaszczyzny) definiuje się jako równoważne (przystające), jeżeli jedna z nich może być przekształcona w drugą za pomocą przesunięć, obrotów i odbić.

    Zero (zapisywane jako 0) – element neutralny dodawania; najmniejsza nieujemna liczba. To, czy zero jest uznawane za liczbę naturalną, jest kwestią umowy – czasem włącza się, a czasem wyklucza się je z tego zbioru. Zero nie jest ani liczbą pierwszą, ani liczbą złożoną.Przestrzeń topologiczna – podstawowe pojęcie topologii; zbiór wyposażony w strukturę (tzw. topologię) wyróżniającą pewną rodzinę jego podzbiorów (tzw. zbiory otwarte), co umożliwia określenie czy dany punkt leży „blisko”, czy „daleko” od danego podzbioru (w jego domknięciu lub poza nim) mimo braku pojęcia odległości (metryki).

    Obroty, przesunięcia i translacje tworzą grupę przekształceń.

    Aby uzyskać precyzyjną opis geometryczny powyżej omówionych przekształceń trzeba zdefiniować takie pojęcia jak: długość, odległość, równoległość (przesunięcie równoległe), prostopadłość, kąt, obrót, odbicie.

    Współczesna definicja płaszczyzny euklidesowej[]

    Współcześnie płaszczyznę euklidesową definiuje się jako dwuwymiarową rzeczywistą przestrzeń afiniczną uzupełnioną oiloczyn skalarny. W takim ujęciu płaszczyzna euklidesowa jest traktowana jako zbiór punktów, których wzajemnie zależności da się wyrazić jedynie za pomocą pojęć odległości i kąta. Przy tymː

    Definicja intuicyjna: Powierzchnia (ściślej: brzeg) kuli. Zbiór punktów oddalonych o pewną zadaną odległość (promień sfery) od wybranego punktu (środek sfery).Prostopadłość – cecha geometryczna dwóch prostych lub płaszczyzn (albo prostej i płaszczyzny), które tworzą przystające kąty przyległe.
  • punkty przestrzeni afinicznej odpowiadają punktom płaszczyzny euklidesowej,
  • wektory stowarzyszonej z przestrzenią afiniczną przestrzeni liniowej odpowiadają przesunięciom,
  • iloczyn skalarny wprowadza pojęcia kąta i odległości, które umożliwiają zdefiniowanie obrotu.
  • Opisanie płaszczyzny euklidesowej w ten sposób sprawia, że rozszerzenie geometrii na dowolne wymiary jest proste: definicje pojęć, wzory i obliczenia nie stają się wówczas znacząco trudniejsze (jedyną trudnością mogą być obroty w wyższych wymiarach oraz wizualizacja takich przestrzeni – trudna nawet dla doświadczonych matematyków).

    Przestrzeń ośrodkowa to przestrzeń topologiczna, która zawiera przeliczalny podzbiór gęsty (czasem zwany ośrodkiem).Linia prosta lub prosta – jedno z podstawowych pojęć geometrii, szczególny przypadek nieograniczonej z obydwu stron krzywej o nieskończonym promieniu krzywizny w każdym punkcie.

    Dzisiejsza matematyka umożliwia łatwe uogólnienie pojęć odległości i kąta na cztero-, pięcio-, a nawet więcej wymiarowe przestrzenie (nazywane hiperprzestrzeniami).

    Często w rozważaniach geometrycznych pomija się mówienie o przestrzeni afinicznej, koncentrując opis na przestrzeni liniowej, która ma ustalony punkt początkowy. Np przedstawiony dalej model przestrzeni współrzędnych, prowadzący do modelu przestrzeni kartezjańskiej, ma naturalny wybór początku. Jednak przestrzeń afiniczną można zawsze wprowadzić w danej przestrzeni liniowej poprzez pominięcie wskazania jej punktu początkowego.

    Wielomian – wyrażenie algebraiczne złożone ze zmiennych i stałych połączonych działaniami dodawania, odejmowania, mnożenia i podnoszenia do potęgi o stałym wykładniku naturalnym.Półprosta - figura geometryczna składająca się z punktów prostej leżących po jednej stronie punktu prostej, który jest nazywany początkiem półprostej. Bardzo często do tak określonej półprostej dołącza się początek półprostej i mówimy o półprostej domkniętej (z początkiem). W przeciwnym wypadku mówimy o półprostej otwartej (bez początku) .

    Dalsza część artykułu poświęcona jest współczesnemu ujęciu geometrii, niezbędnemu przy uogólnianiu geometrii Euklidesa na wyższe wymiary.

    Definicja przestrzeni euklidesowej wymiaru n[]

    Niech dana będzie przestrzeń liniowa wymiaru nad ciałem liczb rzeczywistych , w której określony jest standardowy iloczyn skalarny (nazwany euklidesowym). Przestrzeń afiniczną nazywa się wówczas przestrzenią euklidesową wymiaru

    Przestrzeń metryczna – zbiór z zadaną na nim metryką, tj. funkcją, która określa odległość między każdą parą elementów tego zbioru.Geometria syntetyczna - czyli geometria czysta - dział geometrii, w którym nie używa się metod algebraicznych i obliczeniowych do dowodzenia twierdzeń i rozwiązywania problemów. Wybitnymi znawcami geometrii syntetycznej byli między innymi Euklides, Apoloniusz z Pergi, Michel Chasles i Jakob Steiner.


    Podstrony: [1] 2 [3] [4] [5] [6] [7]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Liczba przeciwna do danej liczby a , {displaystyle a,;} to taka liczba − a , {displaystyle -a,;} że zachodzi:
    Okrąg – brzeg koła; zbiór wszystkich punktów płaszczyzny euklidesowej odległych od ustalonego punktu, nazywanego środkiem, o zadaną odległość, nazywaną promieniem.
    Podzbiór – pewna „część” danego zbioru, czyli dla danego zbioru, nazywanego nadzbiorem, zbiór składający się z pewnej liczby jego elementów, np. żadnego, jednego, wszystkich. Pierwszy przypadek nazywa się podzbiorem pustym, drugi – podzbiorem jednoelementowym lub singletonem, trzeci – podzbiorem niewłaściwym.
    Przestrzeń Hilberta – w analizie funkcjonalnej rzeczywista lub zespolona przestrzeń unitarna (tj. przestrzeń liniowa nad ciałem liczb rzeczywistych lub zespolonych z abstrakcyjnym iloczynem skalarnym), zupełna ze względu na indukowaną (poprzez normę) z iloczynu skalarnego tej przestrzeni metrykę. Jako unormowana i zupełna, każda przestrzeń Hilberta jest przestrzenią Banacha, a przez to przestrzenią Frécheta, a stąd lokalnie wypukłą przestrzenią liniowo-topologiczną. Przestrzenie te noszą nazwisko Davida Hilberta, który wprowadził je pod koniec XIX wieku; są one podstawowym narzędziem wykorzystywanym w wielu dziedzinach fizyki, m.in. w mechanice kwantowej (np. przestrzeń Foka nad przestrzenią Hilberta).
    Baza kanoniczna – pojęcie matematyczne oznaczające bazę pewnej struktury algebraicznej, która jest kanoniczna w ścisłym sensie zależącym od kontekstu:
    Nawigacja – dział wiedzy zajmujący się określaniem bieżącego położenia oraz optymalnej drogi do celu dla ludzi, statków, pojazdów lądowych i innych przemieszczających się obiektów.
    Geometria analityczna – dział geometrii zajmujący się badaniem figur geometrycznych metodami analitycznymi (obliczeniowymi) i algebraicznymi. Złożone rozważania geometryczne zostają w geometrii analitycznej sprowadzone do rozwiązywania układów równań, które opisują badane figury. Przedmiotem badań geometrii analitycznej jest zasadniczo przestrzeń euklidesowa i własności jej podzbiorów, choć wiele wyników można uogólnić na dowolne, skończenie wymiarowe przestrzenie liniowe.

    Reklama

    Czas generowania strony: 0.043 sek.