• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Przestrzeń afiniczna



    Podstrony: [1] [2] 3 [4] [5]
    Przeczytaj także...
    Przestrzeń euklidesowa – przestrzeń o geometrii euklidesowej. Jest ona naturalnym elementem modeli świata rzeczywistego (łac. geometria = mierzenie ziemi) i stanowi dobre przybliżenie przestrzeni fizycznych w warunkach makroskopowych, jednak nie nadaje się do opisu rzeczywistości w bardzo małych, atomowych, lub bardzo wielkich, astronomicznych, wielkościach. Jednowymiarowa przestrzeń euklidesowa nazywana jest prostą euklidesową, zaś dwuwymiarowa – płaszczyzną euklidesową. Przestrzenie te nazywa się również przestrzeniami afinicznymi euklidesowymi w odróżnieniu od przestrzeni liniowych euklidesowych, znanych szerzej jako przestrzenie unitarne.Prostopadłość – cecha geometryczna dwóch prostych lub płaszczyzn (albo prostej i płaszczyzny), które tworzą przystające kąty przyległe.
    Struktura afiniczna przestrzeni liniowej[]

    Z każdą przestrzenią liniową jest związana przestrzeń afiniczna, o ile przyjmie się wtedy termin punkt zastępuje się zwykle całkowicie terminem wektor. Działanie dodawania wektorów do punktów określa się wówczas jako dodawanie elementów przestrzeni :

    Kombinacja afiniczna – w matematyce pojęcie będące szczególnym przypadkiem kombinacji liniowej w przestrzeniach liniowych mające przede wszystkim zastosowania w przestrzeniach afinicznych, a więc i euklidesowych; z tego względu istotne w geometrii euklidesowej.Linia prosta lub prosta – jedno z podstawowych pojęć geometrii, szczególny przypadek nieograniczonej z obydwu stron krzywej o nieskończonym promieniu krzywizny w każdym punkcie.

    Zgodnie z definicją równoważną, w której dwóm punktom przypisuje się wektor, przestrzeń liniową można przekształcić w afiniczną dodając do niej działanie

    Przestrzeń metryczna – zbiór z zadaną na nim metryką, tj. funkcją, która określa odległość między każdą parą elementów tego zbioru.Geometria syntetyczna - czyli geometria czysta - dział geometrii, w którym nie używa się metod algebraicznych i obliczeniowych do dowodzenia twierdzeń i rozwiązywania problemów. Wybitnymi znawcami geometrii syntetycznej byli między innymi Euklides, Apoloniusz z Pergi, Michel Chasles i Jakob Steiner.

    Tłumaczy ono pochodzenie notacji korzystającej z odejmowania punktów w pierwszej definicji przestrzeni afinicznej. Na ogół bada się przestrzenie afiniczne skończonego wymiaru.

    Podzbiór – pewna „część” danego zbioru, czyli dla danego zbioru, nazywanego nadzbiorem, zbiór składający się z pewnej liczby jego elementów, np. żadnego, jednego, wszystkich. Pierwszy przypadek nazywa się podzbiorem pustym, drugi – podzbiorem jednoelementowym lub singletonem, trzeci – podzbiorem niewłaściwym.Liniowa niezależność – w algebrze liniowej własność algebraiczna rodziny wektorów danej przestrzeni liniowej mówiąca, że żaden z nich nie może być zapisany jako kombinacja liniowa skończenie wielu innych wektorów ze zbioru. Rodzinę wektorów, która nie jest liniowo niezależna, nazywa się liniowo zależną.

    Baza i niezależność[]

    Układem współrzędnych afinicznych bądź bazowym lub krótko: bazą przestrzeni afinicznej skończonego wymiaru nazywa się ciąg gdzie jest ustalonym punktem ze zbioru nazywanym punktem bazowym lub początkiem układu, a jest bazą przestrzeni Współrzędne punktu to współrzędne wektora względem bazy

    Felix Christian Klein (ur. 25 kwietnia 1849 w Düsseldorfie, zm. 22 czerwca 1925 w Getyndze) – niemiecki matematyk, profesor uniwersytetów Friedrich-Alexander-Universität Erlangen-Nürnberg, Uniwersytu w Lipsku i Getyndze oraz politechniki w Monachium. Od 1913 członek Berlińskiej Akademii Nauk.Postulat Euklidesa, postulat równoległości, piąty aksjomat Euklidesa – jeden z aksjomatów geometrii euklidesowej. Ma on postać:

    Układ punktów nazywa się afinicznie lub punktowo niezależnym, jeżeli wektory liniowo niezależne. W ten sposób punktów przestrzeni afinicznej rozpina -wymiarową przestrzeń liniową.

    Algebra nad ciałem a. algebra liniowa – w algebrze liniowej przestrzeń liniowa wyposażona w dwuliniowe (wewnętrzne) działanie dwuargumentowe, nazywane mnożeniem (wektorów), które czyni z niej pierścień (niekoniecznie łączny).Geometria afiniczna - jedna z możliwych geometrii. Podstawową figurą geometryczną w tej geometrii jest (podobnie jak w geometrii euklidesowej) prosta, podstawowym pojęciem jest równoległość dwóch prostych a podstawowym odwzorowaniem tzw. odwzorowanie afiniczne.

    Dla każdego wektory stanowią układ liniowo niezależny. O ile dany punkt daje się zapisać jako kombinację afiniczną układu afinicznie niezależnego, to można to zrobić w dokładnie jeden sposób (współrzędne jednoznacznie identyfikują punkt względem takiego układu).

    Przestrzeń liniowa lub wektorowa – w matematyce zbiór obiektów (nazywanych "wektorami"), które mogą być, nieformalnie rzecz ujmując, skalowane i dodawane. Formalnie jest to zbiór z określonymi dwoma działaniami: dodawaniem elementów tej przestrzeni (wektorów) i mnożeniem przez elementy ustalonego ciała, które związane są ze sobą poniższymi aksjomatami. Przestrzenie liniowe to podstawowy obiekt badań algebry liniowej i analizy funkcjonalnej. Znajdują zastosowanie niemal we wszystkich gałęziach matematyki, naukach ścisłych i inżynierii.Ortogonalność (z gr. ortho – prosto, prosty, gonia – kąt) – uogólnienie pojęcia prostopadłości znanego z geometrii euklidesowej na abstrakcyjne przestrzenie z określonym iloczynem skalarnym, jak np. przestrzenie unitarne (w tym przestrzenie Hilberta) czy przestrzenie ortogonalne. Pojęcie ortogonalności bywa uogólnianie również na przestrzenie unormowane w których nie ma naturalnej struktury iloczynu skalarnego (ortogonalność w sensie Pitagorasa, ortogonalność w sensie Jamesa, ortogonalność w sensie Birkhoffa, T-ortogonalność).


    Podstrony: [1] [2] 3 [4] [5]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Moduł – struktura algebraiczna będąca uogólnieniem przestrzeni liniowej. Ponieważ grupy abelowe można postrzegać jako moduły nad pierścieniem liczb całkowitych, to teoria modułów znajduje zastosowanie w wielu działach algebry i innych dziedzinach matematyki.
    Przekształcenie afiniczne, powinowactwo lub pokrewieństwo – przekształcenie geometryczne przestrzeni euklidesowych odwzorowujące odcinki na odcinki. Są one homomorfizmami przestrzeni afinicznych, będących uogólnieniem przestrzeni euklidesowych, czyli spełniają one analogiczną rolę, co przekształcenia liniowe względem przestrzeni liniowych (również będących uogólnieniem przestrzeni euklidesowych).
    Baza – pojęcie będące przeniesieniem oraz rozwinięciem idei układu współrzędnych kartezjańskich w przestrzeniach euklidesowych na abstrakcyjne przestrzenie liniowe.
    Postulat Euklidesa, postulat równoległości, piąty aksjomat Euklidesa – jeden z aksjomatów geometrii euklidesowej. Ma on postać:
    Geometria nieeuklidesowa – geometria, która nie spełnia co najmniej jednego z aksjomatów geometrii euklidesowej. Może ona spełniać tylko część z nich, przy czym mogą również obowiązywać w niej inne, sprzeczne z aksjomatami i twierdzeniami geometrii Euklidesa.
    Przestrzeń rzutowa - obiekt zainteresowania geometrii rzutowej. Jest to modyfikacja pojęcia przestrzeni geometrycznej, gdzie każde dwie proste leżące na jednej płaszczyźnie posiadają punkt wspólny.
    Kąt (płaski) w geometrii euklidesowej – każda z dwóch części (tj. podzbiorów) płaszczyzny zawartych między dwiema półprostymi (wraz z nimi), nazwanymi ramionami, o wspólnym początku, zwanym wierzchołkiem. Czyli jest to część wspólna dwóch półpłaszczyzn wyznaczonych przez dwie nierównoległe proste, wraz z ich brzegami nazywanymi ramionami; ich punkt przecięcia to wierzchołek).

    Reklama

    Czas generowania strony: 0.043 sek.