• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Przestrzeń Hilberta



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Przestrzeń euklidesowa – przestrzeń o geometrii euklidesowej. Jest ona naturalnym elementem modeli świata rzeczywistego (łac. geometria = mierzenie ziemi) i stanowi dobre przybliżenie przestrzeni fizycznych w warunkach makroskopowych, jednak nie nadaje się do opisu rzeczywistości w bardzo małych, atomowych, lub bardzo wielkich, astronomicznych, wielkościach. Jednowymiarowa przestrzeń euklidesowa nazywana jest prostą euklidesową, zaś dwuwymiarowa – płaszczyzną euklidesową. Przestrzenie te nazywa się również przestrzeniami afinicznymi euklidesowymi w odróżnieniu od przestrzeni liniowych euklidesowych, znanych szerzej jako przestrzenie unitarne.Przestrzeń ośrodkowa to przestrzeń topologiczna, która zawiera przeliczalny podzbiór gęsty (czasem zwany ośrodkiem).

    Przestrzeń Hilberta – rzeczywista lub zespolona przestrzeń unitarna (tj. przestrzeń liniowa nad ciałem liczb rzeczywistych lub zespolonych z abstrakcyjnym iloczynem skalarnym), zupełna ze względu na indukowaną (poprzez normę) z iloczynu skalarnego tej przestrzeni metrykę. Jako unormowana i zupełna, każda przestrzeń Hilberta jest przestrzenią Banacha, a przez to przestrzenią Frécheta, a stąd lokalnie wypukłą przestrzenią liniowo-topologiczną. Przestrzenie te noszą nazwisko Davida Hilberta, który wprowadził je pod koniec XIX wieku; są one podstawowym narzędziem wykorzystywanym w wielu dziedzinach fizyki, m.in. w mechanice kwantowej (np. przestrzeń Foka nad przestrzenią Hilberta).

    Równanie różniczkowe cząstkowe to równanie, w którym występuje niewiadoma funkcja dwóch lub więcej zmiennych oraz niektóre z jej pochodnych cząstkowych.Przestrzeń metryczna – zbiór z zadaną na nim metryką, tj. funkcją, która określa odległość między każdą parą elementów tego zbioru.


    Podstrony: 1 [2] [3] [4]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Forma półtoraliniowa albo funkcjonał półtoraliniowy – w algebrze liniowej i analizie funkcjonalnej przekształcenie półtoraliniowe danej zespolonej przestrzeni liniowej w ciało jej skalarów, czyli dwuargumentowy funkcjonał, który jest liniowy ze względu na jeden parametr (zob. funkcjonał liniowy) i antyliniowy ze względu na drugi.
    Forma liniowa albo funkcjonał liniowy (kowektor) – w algebrze liniowej przekształcenie liniowe danej przestrzeni liniowej w ciało jej skalarów, czyli funkcjonał, który jest liniowy, tj. addytywny i jednorodny. Pojęcie to uogólnia się bez zmian na przypadek modułów nad pierścieniami.
    Mechanika kwantowa (teoria kwantów) – teoria praw ruchu obiektów świata mikroskopowego. Poszerza zakres mechaniki na odległości czasoprzestrzenne i energie, dla których przewidywania mechaniki klasycznej nie sprawdzały się. Opisuje przede wszystkim obiekty o bardzo małych masach i rozmiarach - np. atom, cząstki elementarne itp. Jej granicą dla średnich rozmiarów lub średnich energii czy pędów jest mechanika klasyczna.
    Przestrzeń liniowo-topologiczna lokalnie wypukła – przestrzeń liniowo-topologiczna, która ma bazę lokalną złożoną ze zbiorów wypukłych. Ze względu na dobre własności jest to ważna klasa przestrzeni liniowo-topologicznych rozważanych w analizie funkcjonalnej.
    Przestrzeń liniowa lub wektorowa – w matematyce zbiór obiektów (nazywanych "wektorami"), które mogą być, nieformalnie rzecz ujmując, skalowane i dodawane. Formalnie jest to zbiór z określonymi dwoma działaniami: dodawaniem elementów tej przestrzeni (wektorów) i mnożeniem przez elementy ustalonego ciała, które związane są ze sobą poniższymi aksjomatami. Przestrzenie liniowe to podstawowy obiekt badań algebry liniowej i analizy funkcjonalnej. Znajdują zastosowanie niemal we wszystkich gałęziach matematyki, naukach ścisłych i inżynierii.
    Analiza zespolona – dziedzina matematyki, w szczególności analizy matematycznej, obejmująca swą tematyką teorię funkcji zespolonych zmiennej rzeczywistej i zespolonej, jednej i wielu zmiennych – w tym bardzo rozbudowane teorie funkcji analitycznych, funkcji eliptycznych czy odwzorowań konforemnych. Ma zastosowania w teorii liczb, teorii fraktali, matematyce stosowanej, teorii przestrzeni Hilberta a także w pewnych dziedzinach fizyki.
    Rzut lub projekcja – w algebrze liniowej i analizie funkcjonalnej uogólnienie pojęcia rzutu znanego z geometrii elementarnej: idempotentny endomorfizm liniowy określony na danej przestrzeni liniowej, czyli operator liniowy zachowujący swój obraz, tzn. dla którego każdy element obrazu jest punktem stałym tego przekształcenia.

    Reklama