• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Przedział jednostkowy

    Przeczytaj także...
    Przestrzeń topologiczna – podstawowe pojęcie topologii; zbiór wyposażony w strukturę (tzw. topologię) wyróżniającą pewną rodzinę jego podzbiorów (tzw. zbiory otwarte), co umożliwia określenie czy dany punkt leży „blisko”, czy „daleko” od danego podzbioru (w jego domknięciu lub poza nim) mimo braku pojęcia odległości (metryki).Okrąg jednostkowy – okrąg o promieniu jednostkowym, tzn. równym 1. Często, szczególnie w trygonometrii, „okrąg jednostkowy” oznacza okrąg o promieniu 1 i środku w początku, tzn. punkcie ( 0 , 0 ) {displaystyle (0,0),} , układu współrzędnych kartezjańskich płaszczyzny euklidesowej. Często oznacza się go symbolem S 1 {displaystyle mathrm {S} ^{1}} ; jego uogólnieniem na wyższe wymiary jest sfera jednostkowa.
    Linia prosta lub prosta – jedno z podstawowych pojęć geometrii, szczególny przypadek nieograniczonej z obydwu stron krzywej o nieskończonym promieniu krzywizny w każdym punkcie.

    Przedział jednostkowyprzedział liczb rzeczywistych. We wszystkich swych potencjalnych znaczeniach jest on prawie zawsze oznaczany literą . Odgrywa on fundamentalną rolę w teorii homotopii, gałęzi topologii.

    Przestrzeń metryczna – zbiór z zadaną na nim metryką, tj. funkcją, która określa odległość między każdą parą elementów tego zbioru.Graf to – w uproszczeniu – zbiór wierzchołków, które mogą być połączone krawędziami, w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków (ilustracja po prawej stronie). Grafy to podstawowy obiekt rozważań teorii grafów. Za pierwszego teoretyka i badacza grafów uważa się Leonarda Eulera, który rozstrzygnął zagadnienie mostów królewieckich.

    Własności[]

    przestrzeń metryczna  zwarty, ściągalny, łukowo spójny. przestrzeń topologiczna  homeomorficzny z rozszerzoną prostą rzeczywistą, jest jednowymiarową analityczną rozmaitością o brzegu o standardowej orientacji od do . podzbiór liczb rzeczywistych  miara Lebesgue'a równa , uporządkowany liniowo, jest kratą zupełną (każdy podzbiór przedziału jednostkowego ma kres górny i kres dolny).

    Inne znaczenia[]

    W literaturze termin „przedział jednostkowy” może oznaczać również inne przedziały, takie jak , , czy . Zwykle jednak pojęcia tego używa się w stosunku do przedziału domkniętego .

    Podzbiór – pewna „część” danego zbioru, czyli dla danego zbioru, nazywanego nadzbiorem, zbiór składający się z pewnej liczby jego elementów, np. żadnego, jednego, wszystkich. Pierwszy przypadek nazywa się podzbiorem pustym, drugi – podzbiorem jednoelementowym lub singletonem, trzeci – podzbiorem niewłaściwym.Homomorfizm – funkcja odwzorowująca jedną algebrę ogólną (czyli strukturę algebraiczną taką jak grupa, pierścień czy przestrzeń wektorowa) w drugą, zachowująca przy tym odpowiadające sobie operacje. Jest to podstawowe narzędzie w badaniu i porównywaniu algebr.

    Czasami nazwy „przedziału jednostkowego” używa się w odniesieniu do obiektów pełniących podobną rolę w różnych gałęziach matematyki, analogiczną do tej jaką pełni w teorii homotopii. Przykładem może być teoria kołczanów, gdzie analogonem przedziału jednostkowego jest graf o zbiorze wierzchołków zawierający jedną krawędź skierowaną od do . Można także zdefiniować pojęcie homotopii pomiędzy homomorfizmami kołczanów analogiczną do homotopii między funkcjami ciągłymi.

    Topologia (gr. tópos – miejsce, okolica; lógos – słowo, nauka) – jeden z najważniejszych kierunków w matematyce współczesnej. Obiektem jej badań są te własności figur geometrycznych i brył, które nie ulegają zmianie nawet po radykalnym zdeformowaniu tych figur (a więc np. położenie i sąsiedztwo). Własności takie nazywa się własnościami topologicznymi figury.Przestrzeń spójna – w topologii przestrzeń topologiczna oddająca intuicję „składania się z jednego kawałka”, tzn. niemożność jej rozłożenia na sumę dwóch niepustych, rozłącznych podzbiorów otwartych. Istnieje silniejsze pojęcie przestrzeni spójnej drogowo, w której dowolne dwa punkty dają się połączyć drogą.

    Zobacz też[]

  • okrąg jednostkowy



  • w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Brzeg – pojęcie topologiczno-geometryczne oddające i formalizujące intuicję punktów „granicznych” danego zbioru, czy figury, czy też „ograniczających” je.
    Kres (kraniec) dolny (również łac. infimum) oraz kres (kraniec) górny (także łac. supremum) – w matematyce pojęcia oznaczające odpowiednio: największe z ograniczeń dolnych oraz najmniejsze z ograniczeń górnych danego zbioru, o ile takie istnieją.
    Przedział – zbiór elementów danego zbioru częściowo uporządkowanego, zawartych między dwoma ustalonymi elementami tego zbioru, nazywanymi początkiem i końcem przedziału.
    Funkcja ciągła – funkcja o następującej intuicyjnej własności: „mała” zmiana argumentu niesie ze sobą „małą” zmianę wartości; lub też: wartości funkcji dla „bliskich” sobie argumentów również będą sobie „bliskie”.
    Teoria homotopii - dział topologii algebraicznej powiązany z teorią homologii. Teoria homotopii zajmuje się badaniem "kształtu" przestrzeni topologicznych, porównując je z dobrze znanymi przestrzeniami typu (wielowymiarowe) kule, torusy. Podstawowym narzędziem tej teorii jest pojęcie homotopii i homotopijnej równoważności odwzorowań ciągłych. Teoria homotopii jest silnym narzędziem współczesnej geometrii różniczkowej. Początków teorii homotopii można doszukiwać się w pracach Henri Poincarégo. Spory wkład w rozwój tej teorii wniósł polski matematyk, Karol Borsuk.
    Zbiór liczb rzeczywistych – uzupełnienie zbioru liczb wymiernych. Zbiór liczb rzeczywistych zawiera m.in. liczby naturalne, ujemne, całkowite, pierwiastki liczb dodatnich, wymierne, niewymierne, przestępne, itd. Z drugiej strony na liczby rzeczywiste można też patrzeć jak na szczególne przypadki liczb zespolonych.
    Homotopia – ciągłe przejście między dwoma przekształceniami ciągłymi przestrzeni topologicznych, tj. takie, za pomocą którego można w jednostce czasu w wyniku ciągłej deformacji z jednego przekształcenia otrzymać drugie. Działem matematyki w którym się je rozważa jest teoria homotopii, gałąź topologii algebraicznej.

    Reklama

    Czas generowania strony: 0.026 sek.