• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Prosta



    Podstrony: [1] [2] 3 [4]
    Przeczytaj także...
    Elementy (gr. Στοιχεῖα, Stoicheia) – pochodzący z IV wieku p.n.e. traktat arytmetyczny i geometryczny, obejmujący swym zakresem podstawowe zagadnienia obu tych nauk.Przestrzeń euklidesowa – przestrzeń o geometrii euklidesowej. Jest ona naturalnym elementem modeli świata rzeczywistego (łac. geometria = mierzenie ziemi) i stanowi dobre przybliżenie przestrzeni fizycznych w warunkach makroskopowych, jednak nie nadaje się do opisu rzeczywistości w bardzo małych, atomowych, lub bardzo wielkich, astronomicznych, wielkościach. Jednowymiarowa przestrzeń euklidesowa nazywana jest prostą euklidesową, zaś dwuwymiarowa – płaszczyzną euklidesową. Przestrzenie te nazywa się również przestrzeniami afinicznymi euklidesowymi w odróżnieniu od przestrzeni liniowych euklidesowych, znanych szerzej jako przestrzenie unitarne.
    Przypisy
    1. Richard A. Silverman: Modern Calculus and Analytic Geometry. Courier Dover Publications, 2002, s. 550. ISBN 0-486-42100-7, 9780486421001.
    2. Trygonometrią sferyczną zajmował się już w I w. n.e. Menelaos z Aleksandrii, a po nim Klaudiusz Ptolemeusz. Źródło: [1]
    3. Aby było to możliwe, przestrzeń musi być tzw. G-przestrzenią Herberta Busemanna, będącą szczególnym przypadkiem przestrzeni metrycznej.
    4. S. Singh: Fundamentals of Optical Engineering. Discovery Publishing House, s. 53. ISBN 81-8356-436-4, 9788183564366. (ang.)
    5. Alekseĭ Vasilʹevich Pogorelov, Leo F. Boron: Differential geometry. Wyd. 3. P. Noordhoff, 1967, s. 155. (ang.)
    6. Księga I, Definicja 2
    7. Księga I, Definicja 4
    8. Księga I, Definicja 23
    9. w sensie metryki euklidesowej
    10. w sensie inkluzji
    11. Bronsztejn i Siemiendiajew 1976 ↓, s. 262.
    12. Zobacz przestrzeń euklidesowa
    13. Na przykład aksjomat ten jest niezbędny do udowodnienia twierdzenia Pitagorasa oraz twierdzenia o sumie kątów wewnętrznych trójkąta, równej 180°.
    14. Z reguły w geometrii Łobaczewskiego używa się innej terminologii: nie zawsze proste nieprzecinające się nazywane są równoległymi. Dlatego w tym pewniku często zamiast słowa "równoległa" mówi się "rozłączna".
    15. Jednak w tym przypadku trzeba zmienić nie tylko piąty postulat, ale również niektóre inne aksjomaty geometrii euklidesowej.
    16. Na ogół w polskiej literaturze pisze się o "kołach wielkich" sfery, jednak jest to niekonsekwentne, gdyż koło to figura z wnętrzem, a krzywa będąca jej brzegiem to okrąg. W literaturze anglosaskiej spotykamy się za to konsekwentnie z określeniem great circle a nie great disc.
    17. en:Geodesic (general relativity)
    18. Ściślej: grawitacja to zakrzywienie czasoprzestrzeni, w której znajduje się trajektoria danego ciała. Trajektoria jest w czasoprzestrzeni statyczną i niezmienną krzywą. W czasoprzestrzeni formalnie nic się nie zmienia ani nie porusza, bo obejmuje ona wszystkie chwile czasowe jednocześnie.

    Bibliografia[]

  • Andrzej Szczepan Białynicki-Birula: Algebra liniowa z geometrią. Warszawa: PWN, 1976, seria: Biblioteka Matematyczna.
  • Franciszek Otto, Edward Otto: Podręcznik geometrii wykreślnej. Warszawa: PWN, 1975. ISBN 978-83-01-00933-5.
  • Wanda Szmielew: Od geometrii afinicznej do euklidesowej: rozważania nad aksjomatyką. Warszawa: PWN, 1983. ISBN 83-01-03513-7.
  • Większość wzorów w tym artykule pochodzi z:

    Rzut równoległy na płaszczyznę – odwzorowanie przestrzeni euklidesowej trójwymiarowej na daną płaszczyznę w ten sposób, że każdemu punktowi przestrzeni przypisany jest punkt przecięcia się prostej, równoległej do kierunku rzutowania, przechodzącej przez dany punkt, z płaszczyzną.Przekształcenie liniowe – w algebrze liniowej funkcja między przestrzeniami liniowymi (nad ustalonym ciałem) zachowująca ich strukturę; z punktu widzenia algebry jest to zatem homomorfizm (a z punktu widzenia teorii kategorii – morfizm kategorii) przestrzeni liniowych nad ustalonym ciałem. W przypadku przestrzeni skończonego wymiaru z ustalonymi bazami do opisu przekształceń liniowych między nimi stosuje się zwykle macierze (zob. wybór baz).
  • Igor N. Bronsztejn, Konstantin A. Siemiendiajew: Matematyka, poradnik encyklopedyczny. Wyd. VI. Warszawa: PWN, 1976.
  • Linki zewnętrzne[]

  • Applet pokazujący różne równania prostej na płaszczyźnie
  • Marceli Stark: Geometria analityczna, Monografie Matematyczne, Tom 26. W: Biblioteka Wirtualna Nauki ICM [on-line]. Warszawa-Wrocław, 1951.
  • Proste na płaszczyźnie
  • Szerokość geograficzna (ang. latitude, symbol φ) – jedna ze współrzędnych geograficznych, kąt pomiędzy półprostą poprowadzoną ze środka kuli ziemskiej i przechodzącą przez dany punkt na jej powierzchni a płaszczyzną równika.Rząd macierzy (o elementach z pewnego ciała) - maksymalna liczba liniowo niezależnych wektorów tworzących kolumny danej macierzy.


    Podstrony: [1] [2] 3 [4]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Szczególna teoria względności (STW) – teoria fizyczna stworzona przez Alberta Einsteina w 1905 roku. Zmieniła ona sposób pojmowania czasu i przestrzeni opisane wcześniej w newtonowskiej mechanice klasycznej. Teoria pozwoliła usunąć trudności interpretacyjne i sprzeczności pojawiające się na styku mechaniki (zwanej obecnie klasyczną) i elektromagnetyzmu po ogłoszeniu przez Jamesa Clerka Maxwella teorii elektromagnetyzmu.
    Geometria eliptyczna albo sferyczna (również geometria powierzchni kuli, tj. sfery) – jeden z rodzajów geometrii nieeuklidesowej, szczególny przypadek geometrii Riemanna dla stałej i dodatniej krzywizny.
    Linia świata – w fizyce, zbiór punktów, z których każdy reprezentuje tzw. zdarzenie czasoprzestrzenne, określający kolejne położenia obiektu na diagramie czasoprzestrzennym Minkowskiego w wybranych składowych czasoprzestrzeni.
    Brzeg – pojęcie topologiczno-geometryczne oddające i formalizujące intuicję punktów „granicznych” danego zbioru, czy figury, czy też „ograniczających” je.
    Aksjomat Archimedesa - aksjomat geometrii głoszący, że każdy odcinek jest krótszy od pewnej wielokrotności długości każdego innego odcinka. Z niego wynika nieograniczoność prostej. Został on wbrew nazwie sformułowany po raz pierwszy przez Eudoksosa, a nazwany w ten sposób przez Otto Stoltza w 1883. Geometrie nie spełniające go zwane są niearchimedesowymi.
    Definicja intuicyjna: Powierzchnia (ściślej: brzeg) kuli. Zbiór punktów oddalonych o pewną zadaną odległość (promień sfery) od wybranego punktu (środek sfery).
    Prostopadłość – cecha geometryczna dwóch prostych lub płaszczyzn (albo prostej i płaszczyzny), które tworzą przystające kąty przyległe.

    Reklama

    Czas generowania strony: 0.074 sek.