• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Proces Lévy'ego



    Podstrony: [1] 2 [3] [4]
    Przeczytaj także...
    Proces stochastyczny - rodzina zmiennych losowych określonych na pewnej przestrzeni probabilistycznej o wartościach w pewnej przestrzeni mierzalnej. Najprostszym przykładem procesu stochastycznego jest wielokrotny rzut monetą: dziedziną funkcji jest zbiór liczb naturalnych (liczba rzutów), natomiast wartością funkcji dla danej liczby jest jeden z dwóch możliwych stanów losowania (zdarzenie), orzeł lub reszka. Nie należy mylić procesu losowego, którego wartości są zdarzeniami losowymi, z funkcją, która zdarzeniom przypisuje wartość prawdopodobieństwa ich wystąpienia (mamy wówczas do czynienia z rozkładem gęstości prawdopodobieństwa).Definicja intuicyjna: Odpowiednik transformaty Fouriera dla miar probabilistycznych, rozkładów prawdopodobieństwa i zmiennych losowych.
    Własności[]

    Najważniejszą cechą procesów Lévy'ego, sprawiającą, że są intensywnie badane, jest ich strukturalna stabilność. Cecha ta polega na tym, że suma dowolnej liczby procesów Lévy'ego jest także procesem Lévy'ego, co pozwala spojrzeć na procesy Lévy'ego jak na uogólnienie procesów Gaussa. Jednocześnie procesy Lévy'ego w ogólności nie mają skończonej wariancji, czyli możliwe są dowolnie duże skoki wartości przy procentowym udziale takich skoków znacznie większym niż dla procesów Gaussa, gdzie wariancja jest skończona.

    Wariancja to w statystyce klasyczna miara zmienności. Intuicyjnie utożsamiana ze zróżnicowaniem zbiorowości; jest średnią arytmetyczną kwadratów odchyleń (różnic) poszczególnych wartości cechy od wartości oczekiwanej.Przestrzeń probabilistyczna – struktura umożliwiająca modelowanie doświadczenia losowego poprzez wskazanie zdarzeń losowych i przypisanie im prawdopodobieństwa.

    Wzór Lévy'ego[]

    Rozkład procesu Lévy'ego w momencie , jest rozkładem nieskończenie podzielnym. Stąd istnieje eksponencjalne przedstawienie funkcji charakterystycznej procesu Lévy'ego w chwili t - tzw. wzór Lévy'ego-Chinczyna:

    Złożony proces Poissona – proces stochastyczny, w którym w losowych momentach czasu (zadanymi procesem Poissona) następuje zmiana o losową wartość, po czym do czasu następnej zmiany wartość procesu jest wielkością stałą.Martyngał – w teorii prawdopodobieństwa to proces stochastyczny (ciąg zmiennych losowych), w którym warunkowa wartość oczekiwana zmiennej w momencie t, gdy znamy wartości do jakiegoś wcześniejszego momentu s, jest równa wartości w momencie s.
    ,

    gdzie

    Prawdopodobieństwo – ogólne określenie jednego z wielu pojęć służących modelowaniu doświadczenia losowego poprzez przypisanie poszczególnym zdarzeniom losowym liczb, zwykle z przedziału jednostkowego (w zastosowaniach często wyrażanych procentowo), wskazujących szanse ich zajścia. W rozumieniu potocznym wyraz „prawdopodobieństwo” odnosi się do oczekiwania względem rezultatu zdarzenia, którego wynik nie jest znany (niezależnie od tego, czy jest ono w jakimś sensie zdeterminowane, miało miejsce w przeszłości, czy dopiero się wydarzy); w ogólności należy je rozumieć jako pewną miarę nieprzewidywalności.Zmienna losowa – funkcja przypisująca zdarzeniom elementarnym liczby. Intuicyjnie: odwzorowanie przenoszące badania prawdopodobieństwa z niewygodnej przestrzeni probabilistycznej do dobrze znanej przestrzeni euklidesowej. Zmienne losowe to funkcje mierzalne względem przestrzeni probabilistycznych.

    przy czym

    Zbiór borelowski – podzbiór przestrzeni topologicznej, który można uzyskać za pomocą przeliczalnych sum i przekrojów zbiorów domkniętych (bądź zwartych) tej przestrzeni. Klasa zbiorów uzyskanych za pomocą tych operacji tworzy σ-ciało nazywane σ-ciałem zbiorów borelowskich lub σ-ciałem borelowskim danej przestrzeni topologicznej. Nazwa została wprowadzona dla uhonorowania prac francuskiego matematyka Émile Borela, który pierwszy badał te zbiory i ich zastosowania.Proces Poissona – nazwana na cześć francuskiego matematyka, Siméona Denisa Poissona, rodzina (będąca procesem stochastycznym - procesem Markowa) ( N t , t ≥ 0 ) {displaystyle (N_{t},;tgeq 0)} zdefiniowana w następujący sposób:
    jest miarą na spełniającą warunek

    a jest macierzą dodatnio określoną. Funkcję nazywa się wykładnikiem charakterystycznym procesu Lévy'ego. Trójkę nazywa się trójką charakterystyczną procesu. Zgodnie ze wzorem Lévy'ego-Chinczyna trójka charakterystyczna jednoznacznie określa proces.

    Jeśli , to wykładnik charakterystyczny można zapisać w postaci

    Podstrony: [1] 2 [3] [4]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Reklama

    Czas generowania strony: 0.047 sek.