• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Proces Lévy'ego



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Proces stochastyczny - rodzina zmiennych losowych określonych na pewnej przestrzeni probabilistycznej o wartościach w pewnej przestrzeni mierzalnej. Najprostszym przykładem procesu stochastycznego jest wielokrotny rzut monetą: dziedziną funkcji jest zbiór liczb naturalnych (liczba rzutów), natomiast wartością funkcji dla danej liczby jest jeden z dwóch możliwych stanów losowania (zdarzenie), orzeł lub reszka. Nie należy mylić procesu losowego, którego wartości są zdarzeniami losowymi, z funkcją, która zdarzeniom przypisuje wartość prawdopodobieństwa ich wystąpienia (mamy wówczas do czynienia z rozkładem gęstości prawdopodobieństwa).Definicja intuicyjna: Odpowiednik transformaty Fouriera dla miar probabilistycznych, rozkładów prawdopodobieństwa i zmiennych losowych.

    Proces Lévy'egoproces stochastyczny na przestrzeni probabilistycznej o wartościach w przestrzeni euklidesowej , spełniający następujące warunki:

    Wariancja to w statystyce klasyczna miara zmienności. Intuicyjnie utożsamiana ze zróżnicowaniem zbiorowości; jest średnią arytmetyczną kwadratów odchyleń (różnic) poszczególnych wartości cechy od wartości oczekiwanej.Przestrzeń probabilistyczna – struktura umożliwiająca modelowanie doświadczenia losowego poprzez wskazanie zdarzeń losowych i przypisanie im prawdopodobieństwa.
    1. , -prawie wszędzie,
    2. dla każdego ciągu zmienne losowe są niezależne,
    3. rozkład nie zależy od dla każdych ,
    4. proces jest ciągły według prawdopodobieństwa tzn. dla każdego i dla każdego
    .

    Proces stochastyczny spełniający powyższe warunki posiada modyfikację będącą prawostronnie ciągłym z lewostronnymi granicami (z ang. RCLL, z fr. càdlàg) procesem Lévy'ego.

    Złożony proces Poissona – proces stochastyczny, w którym w losowych momentach czasu (zadanymi procesem Poissona) następuje zmiana o losową wartość, po czym do czasu następnej zmiany wartość procesu jest wielkością stałą.Martyngał – w teorii prawdopodobieństwa to proces stochastyczny (ciąg zmiennych losowych), w którym warunkowa wartość oczekiwana zmiennej w momencie t, gdy znamy wartości do jakiegoś wcześniejszego momentu s, jest równa wartości w momencie s.

    Spis treści

  • 1 Własności
  • 2 Wzór Lévy'ego
  • 3 Rozkład Lévy'ego–Itō
  • 4 Przykłady
  • 5 Zobacz też


  • Podstrony: 1 [2] [3] [4]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Prawdopodobieństwo – ogólne określenie jednego z wielu pojęć służących modelowaniu doświadczenia losowego poprzez przypisanie poszczególnym zdarzeniom losowym liczb, zwykle z przedziału jednostkowego (w zastosowaniach często wyrażanych procentowo), wskazujących szanse ich zajścia. W rozumieniu potocznym wyraz „prawdopodobieństwo” odnosi się do oczekiwania względem rezultatu zdarzenia, którego wynik nie jest znany (niezależnie od tego, czy jest ono w jakimś sensie zdeterminowane, miało miejsce w przeszłości, czy dopiero się wydarzy); w ogólności należy je rozumieć jako pewną miarę nieprzewidywalności.
    Zmienna losowa – funkcja przypisująca zdarzeniom elementarnym liczby. Intuicyjnie: odwzorowanie przenoszące badania prawdopodobieństwa z niewygodnej przestrzeni probabilistycznej do dobrze znanej przestrzeni euklidesowej. Zmienne losowe to funkcje mierzalne względem przestrzeni probabilistycznych.
    Zbiór borelowski – podzbiór przestrzeni topologicznej, który można uzyskać za pomocą przeliczalnych sum i przekrojów zbiorów domkniętych (bądź zwartych) tej przestrzeni. Klasa zbiorów uzyskanych za pomocą tych operacji tworzy σ-ciało nazywane σ-ciałem zbiorów borelowskich lub σ-ciałem borelowskim danej przestrzeni topologicznej. Nazwa została wprowadzona dla uhonorowania prac francuskiego matematyka Émile Borela, który pierwszy badał te zbiory i ich zastosowania.
    Proces Poissona – nazwana na cześć francuskiego matematyka, Siméona Denisa Poissona, rodzina (będąca procesem stochastycznym - procesem Markowa) ( N t , t ≥ 0 ) {displaystyle (N_{t},;tgeq 0)} zdefiniowana w następujący sposób:

    Reklama

    Czas generowania strony: 0.033 sek.