• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Prawdopodobieństwo



    Podstrony: [1] [2] [3] 4
    Przeczytaj także...
    Zbiory rozłączne – dwa zbiory, których część wspólna jest zbiorem pustym. Inaczej mówiąc, zbiory nie mające wspólnego elementu.Przestrzeń euklidesowa – przestrzeń o geometrii euklidesowej. Jest ona naturalnym elementem modeli świata rzeczywistego (łac. geometria = mierzenie ziemi) i stanowi dobre przybliżenie przestrzeni fizycznych w warunkach makroskopowych, jednak nie nadaje się do opisu rzeczywistości w bardzo małych, atomowych, lub bardzo wielkich, astronomicznych, wielkościach. Jednowymiarowa przestrzeń euklidesowa nazywana jest prostą euklidesową, zaś dwuwymiarowa – płaszczyzną euklidesową. Przestrzenie te nazywa się również przestrzeniami afinicznymi euklidesowymi w odróżnieniu od przestrzeni liniowych euklidesowych, znanych szerzej jako przestrzenie unitarne.
    Uwagi
    1. Być może lepsze są nazwy, w których brak wyrazu „zdarzenie”, np. „możliwość”, „przypadek”, czy „wynik”, gdyż nie prowadzą one do błędnego przeświadczenia, iż zdarzenia elementarne są zdarzeniami (zdarzenia elementarne, jako elementy, składają się na zdarzenia, które są zbiorami; zob. zbiór i podzbiór). Chcąc uzyskać zdarzenie, które zawierałoby wyłącznie wybrane zdarzenie elementarne należy wziąć zbiór jednoelementowy
    2. W istocie wymaga się tu bardziej możliwości określenia długości, która ma być skończona. W domyśle przyjmuje się, że jest ona określana za pomocą tzw. miary Jordana, o ile nie zostanie zaznaczone wyraźnie inaczej; zob. kolejną sekcję.
    3. Przykładowo problematyczny jest zbiór liczb wymiernych należących do odcinka jednostkowego. Zgodnie z definicją miary Jordana na prostej mierzenie tego zbioru odbywa się poprzez wypełnienie go „od dołu” i pokrycie „od góry” skończoną liczbą odcinków o ustalonej długości. Z jednej strony „pokrycie od góry” tego nieskończonego zbioru zawsze prowadzi do pokrycia nimi całego odcinka jednostkowego, gdyż punkty wymierne są na nim gęsto rozmieszczone, a więc zbiór ten ma jednostkową miarę zewnętrzną; z drugiej strony punkty niewymierne również są na nim gęsto rozmieszczone, co oznacza, że dopełnienie mierzonego zbioru również pokrywa w całości odcinek jednostkowy – „wypełnienie od dołu” będące różnicą miary całego odcinka i miary dopełnienia ma więc miarę zerową. Miara zbioru liczb wymiernych na odcinku jednostkowy w sensie Jordana jest więc nieokreślona, choć intuicyjnie zbiór ten powinien mieć miarę zerową, gdyż jest tylko przeliczalny w przeciwieństwie do jego dopełnienia.
    4. Podana niżej definicja przenosi się niemal bez zmian na algebry Boole'a.
    5. Zob. ciąg zbiorów.
    6. W szczególności rodzina może pokrywać się z co ma np. miejsce w przypadku przeliczalnym i skończonym; uogólnia ona więc wszystkie poprzednie definicje.
    7. Rodzinę o podanych własnościach nazywa się σ-ciałem podzbiorów zbioru
    8. W przestrzeni euklidesowej istnieją zbiory, np. zbiór Vitalego, dla których określenie ich miary Lebesgue'a jest niemożliwe; rozpatrywanie σ-ciała wyklucza tego rodzaju zbiory z dyskursu dając przy tym wystarczająco bogaty zestaw zbiorów mierzalnych użyteczny do wszelkich zastosowań; ponieważ konstrukcja zbiorów niemierzalnych wymaga użycia szczególnych środków (aksjomat wyboru), bywa, iż w popularnym ujęciu pomija się te dywagacje de facto rozmywając precyzję definicji Kołmogorowa do nieformalnej definicji Buffona.
    9. W gruncie rzeczy chodzi przede wszystkim o konstrukcję Gelfanda–Najmarka–Segala.
    10. Aby uzyskać wystarczający stopień ogólności można ograniczyć się do przestrzeni określonych na zbiorze zmiennych losowych o wszystkich momentach skończonych. Klasa ta jest zamknięta ze względu na mnożenie (zob. dalej) i wszystkie jej elementy mają skończony ślad (lub wartość oczekiwaną). Można by ograniczyć się dalej, do przestrzeni (istotnie) ograniczonych zmiennych losowych (zob. przestrzenie Lebesgue'a), ale traci się w ten sposób traci ważne przykłady zmiennych losowych, w szczególności zmienne gaussowskie. Wybór oznacza jednak rezygnację z jakiejś części struktury analitycznej, w szczególności w przeciwieństwie do wskazana przestrzeń nie jest Banacha, jednakże w przypadku podejścia algebraicznego wydaje się to być rozsądną ceną.
    11. W języku algebr von Neumanna warunek ten (wraz z będącym odpowiednikiem unormowania prawdopodobieństwa Kołmogorowa) oznacza, że jest stanem.
    12. Rozpatrywana jest więc próba Bernoulliego.
    13. Zob. awers i rewers.
    14. Zob. paradoks hazardzisty i odwrotny paradoks hazardzisty.
    15. W tym momencie nie jest jasne co właściwie oznacza termin „losowo”: w ujęciu Kołmogorowa oznaczałoby to w tym przykładzie „zgodnie z rozkładem jednostajnym”.
    16. Zbiór jest w istocie przeliczalnym iloczynem prostym Rozpatruje się też wersję „dwustronną”
    17. Na zbiorze istnieje naturalna topologia nazywana topologią iloczynową; jej elementami są skończone ciągi elementów – pozostałe (nieskończone) ciągi można uważać w niej za nieistotne. Zbiory ciągów skończonych są nazywane zbiorami cylindrycznymi w tej topologii.
    18. Chodzi tu o σ-ciało, mianowicie σ-ciało borelowskie.
    19. Oznacza to, że próby Bernoulliego mają rozkład dwupunktowy z prawdopodobieństwami oraz
    20. Formalnie jest ciągiem gdzie wspomniana notacja jest używana w celu zachowania spójności z poprzednimi przykładami. Można ją sformalizować przyjmując, że zdarzenia opisywane są przez słowa nad alfabetem (zob. język formalny).
    21. Wspomnianą miarę, która jest miarą iloczynową, nazywa się niekiedy „miarą Bernoulliego”; samo doświadczenie losowe nazywa się procesem Bernoulliego.
    22. To znaczy jest ono miary zero.
    23. Jest to najuboższa topologia umożliwiająca opis procesu Bernoulliego, bogatsze topologie zezwalające na rozpatrywanie ciągów nieskończonych mogą prowadzić do pewnych nieporozumień, czy paradoksów; zob. silna topologia.
    24. Lewy podprzedział oznacza podprzedział o wartościach bliższych zerach, prawy – o wartościach bliższych jedności.

    Przypisy

    1. Wojciech Załuski. [http://seminascientiarum.wdfiles.com/local--files/numer-1-2002/1.3Zaluski.pdf O Karla R. Poppera skłonnościowej interpretacji prawdopodobieństwa]. „Semina Scientiarum”, 2002. 
    2. Załuski, Wojciech Zbigniew: Skłonnościowa interpretacja prawdopodobieństwa. Ośrodek Badań Interdyscyplinarnych przy Wydziale Filozoficznym Papieskiej Akademii Teologicznej, 2008. (pol.)
    3. Tomasz Downarowicz: Prawo serii w ujęciu matematycznym. 12 stycznia 2011.
    4. Marek Czachor: Wstęp do teorii informacji: Wykład 8. 29 listopada 2011.
    5. Tadeusz Inglot: Teoria informacji a statystyka matematyczna. 3-7 grudnia 2012.
    Rozkład normalny, zwany też rozkładem Gaussa – jeden z najważniejszych rozkładów prawdopodobieństwa. Odgrywa ważną rolę w statystycznym opisie zagadnień przyrodniczych, przemysłowych, medycznych, społecznych itp. Wykres funkcji prawdopodobieństwa tego rozkładu jest krzywą dzwonową.Błędne koło w definiowaniu, circulus in definiendo – błąd logiczny polegający na użyciu w definicji równościowej wyrazu definiowanego w definiens. Błąd taki występuje np. w definicji "logika to nauka o myśleniu zgodnym z prawami logiki".


    Podstrony: [1] [2] [3] 4



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Prawdopodobieństwo obiektywne to interpretacja teorii prawdopodobieństwa, według której wartość prawdopodobieństwa danego zdarzenia jest granicą stosunku liczby "sukcesów" do liczby "losowań".
    Moc zbioru – własność zbioru, która opisuje jego liczebność. Nieformalnie, moc zbioru jest tym większa im większy jest zbiór. Pojęcie mocy zbioru opiera się na pojęciu równoliczności dwóch zbiorów – zbiory A i B są równoliczne, gdy każdy element zbioru A można połączyć w parę z dokładnie jednym elementem zbioru B, innymi słowy istnieje bijekcja (funkcja różnowartościowa i "na") między zbiorami A i B. Zbiory równoliczne mają tę samą moc. Moce zbiorów są konkretnymi obiektami matematycznymi, nazywanymi liczbami kardynalnymi.
    Rozkład prawdopodobieństwa – w najczęstszej interpretacji (rozkład zmiennej losowej) miara probabilistyczna określona na sigma-ciele podzbiorów zbioru wartości zmiennej losowej (wektora losowego), pozwalająca przypisywać prawdopodobieństwa zbiorom wartości tej zmiennej, odpowiadającym zdarzeniom losowym. Formalnie rozkład prawdopodobieństwa może być jednak rozpatrywany także bez stosowania zmiennych losowych.
    Algebra Boole’a – algebra ogólna stosowana w matematyce, informatyce teoretycznej oraz elektronice cyfrowej. Jej nazwa pochodzi od nazwiska matematyka, filozofa i logika George’a Boole’a. Teoria algebr Boole’a jest działem matematyki na pograniczu teorii częściowego porządku, algebry, logiki matematycznej i topologii.
    Rozkład jednostajny (zwany też jednorodnym, równomiernym) to rozkład prawdopodobieństwa o funkcji rozkładu stałej w całym nośniku rozkładu.
    Miara produktowa – dla danych dwóch miar, miara określona na produktowej przestrzeni mierzalnej, która iloczynowi kartezjańskiemu zbiorów mierzalnych (należących do odpowiednich σ {displaystyle sigma } -algebr) przyporządkowuje iloczyn ich miar.
    Przestrzeń topologiczna – podstawowe pojęcie topologii; zbiór wyposażony w strukturę (tzw. topologię) wyróżniającą pewną rodzinę jego podzbiorów (tzw. zbiory otwarte), co umożliwia określenie czy dany punkt leży „blisko”, czy „daleko” od danego podzbioru (w jego domknięciu lub poza nim) mimo braku pojęcia odległości (metryki).

    Reklama

    Czas generowania strony: 0.066 sek.