• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Prawdopodobieństwo



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Zbiory rozłączne – dwa zbiory, których część wspólna jest zbiorem pustym. Inaczej mówiąc, zbiory nie mające wspólnego elementu.Przestrzeń euklidesowa – przestrzeń o geometrii euklidesowej. Jest ona naturalnym elementem modeli świata rzeczywistego (łac. geometria = mierzenie ziemi) i stanowi dobre przybliżenie przestrzeni fizycznych w warunkach makroskopowych, jednak nie nadaje się do opisu rzeczywistości w bardzo małych, atomowych, lub bardzo wielkich, astronomicznych, wielkościach. Jednowymiarowa przestrzeń euklidesowa nazywana jest prostą euklidesową, zaś dwuwymiarowa – płaszczyzną euklidesową. Przestrzenie te nazywa się również przestrzeniami afinicznymi euklidesowymi w odróżnieniu od przestrzeni liniowych euklidesowych, znanych szerzej jako przestrzenie unitarne.

    Prawdopodobieństwo – ogólne określenie jednego z wielu pojęć służących modelowaniu doświadczenia losowego poprzez przypisanie poszczególnym zdarzeniom losowym liczb, zwykle z przedziału jednostkowego (w zastosowaniach często wyrażanych procentowo), wskazujących szanse ich zajścia. W rozumieniu potocznym wyraz „prawdopodobieństwo” odnosi się do oczekiwania względem rezultatu zdarzenia, którego wynik nie jest znany (niezależnie od tego, czy jest ono w jakimś sensie zdeterminowane, miało miejsce w przeszłości, czy dopiero się wydarzy); w ogólności należy je rozumieć jako pewną miarę przewidywalności bądź pewności względem zjawiska (przy danej o nim wiedzy), co umożliwia ocenę potencjalnie związanego z nim ryzyka.

    Rozkład normalny, zwany też rozkładem Gaussa – jeden z najważniejszych rozkładów prawdopodobieństwa. Odgrywa ważną rolę w statystycznym opisie zagadnień przyrodniczych, przemysłowych, medycznych, społecznych itp. Wykres funkcji prawdopodobieństwa tego rozkładu jest krzywą dzwonową.Błędne koło w definiowaniu, circulus in definiendo – błąd logiczny polegający na użyciu w definicji równościowej wyrazu definiowanego w definiens. Błąd taki występuje np. w definicji "logika to nauka o myśleniu zgodnym z prawami logiki".

    Istnieje wiele interpretacji zagadnienia prawdopodobieństwa: a posteriori, czyli częstotliwościowe (zob. Definicja von Misesa), albo a priori, czyli bayesowskie (od nazwiska Thomasa Bayesa, zob. twierdzenie Bayesa), które dzieli się z kolei na subiektywne, które oddawać ma stan wiedzy osoby używającej rozumowania bayesowskiego, oraz obiektywne, które powinno być takie samo dla każdego używającego tego rozumowania. Osobną jest interpretacja skłonnościowa Karla Raimunda Poppera.

    Prawdopodobieństwo obiektywne to interpretacja teorii prawdopodobieństwa, według której wartość prawdopodobieństwa danego zdarzenia jest granicą stosunku liczby "sukcesów" do liczby "losowań".Moc zbioru – własność zbioru, która opisuje jego liczebność. Nieformalnie, moc zbioru jest tym większa im większy jest zbiór. Pojęcie mocy zbioru opiera się na pojęciu równoliczności dwóch zbiorów – zbiory A i B są równoliczne, gdy każdy element zbioru A można połączyć w parę z dokładnie jednym elementem zbioru B, innymi słowy istnieje bijekcja (funkcja różnowartościowa i "na") między zbiorami A i B. Zbiory równoliczne mają tę samą moc. Moce zbiorów są konkretnymi obiektami matematycznymi, nazywanymi liczbami kardynalnymi.

    Teoria prawdopodobieństwa, nazywana również rachunkiem prawdopodobieństwa, jest ugruntowanym działem matematyki, który wyrósł z rozważań dotyczących gier losowych w XVII wieku i został sformalizowany oraz zaksjomatyzowany jako osobna dziedzina matematyki na początku XX wieku. Z punktu widzenia filozofii matematyki w swojej aksjomatycznej postaci twierdzenia matematyczne dotyczące teorii prawdopodobieństwa niosą ze sobą tę samą pewność epistemologiczną, co wszystkie inne twierdzenia matematyczne. Inną aksjomatyzację pojęcia prawdopodobieństwa w duchu bayesowskiego obiektywizmu podał Richard Threlkeld Cox, która przedstawiana jest często w postaci twierdzenia Coxa.

    Rozkład prawdopodobieństwa – w najczęstszej interpretacji (rozkład zmiennej losowej) miara probabilistyczna określona na sigma-ciele podzbiorów zbioru wartości zmiennej losowej (wektora losowego), pozwalająca przypisywać prawdopodobieństwa zbiorom wartości tej zmiennej, odpowiadającym zdarzeniom losowym. Formalnie rozkład prawdopodobieństwa może być jednak rozpatrywany także bez stosowania zmiennych losowych.Algebra Boole’a – algebra ogólna stosowana w matematyce, informatyce teoretycznej oraz elektronice cyfrowej. Jej nazwa pochodzi od nazwiska matematyka, filozofa i logika George’a Boole’a. Teoria algebr Boole’a jest działem matematyki na pograniczu teorii częściowego porządku, algebry, logiki matematycznej i topologii.


    Podstrony: 1 [2] [3] [4]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Rozkład jednostajny (zwany też jednorodnym, równomiernym) to rozkład prawdopodobieństwa o funkcji rozkładu stałej w całym nośniku rozkładu.
    Miara produktowa – dla danych dwóch miar, miara określona na produktowej przestrzeni mierzalnej, która iloczynowi kartezjańskiemu zbiorów mierzalnych (należących do odpowiednich σ {displaystyle sigma } -algebr) przyporządkowuje iloczyn ich miar.
    Przestrzeń topologiczna – podstawowe pojęcie topologii; zbiór wyposażony w strukturę (tzw. topologię) wyróżniającą pewną rodzinę jego podzbiorów (tzw. zbiory otwarte), co umożliwia określenie czy dany punkt leży „blisko”, czy „daleko” od danego podzbioru (w jego domknięciu lub poza nim) mimo braku pojęcia odległości (metryki).
    Ryzyko (ang. risk, fr. risque, niem. risiko,wł. rischio) – jest pojęciem wieloznacznym, trudnym do zdefiniowania. W różnych dziedzinach nauk jest ono różnie interpretowane, dlatego zdaniem niektórych autorów stworzenie jednej uniwersalnej definicji jest niemożliwe.
    Awers i rewers (łac.) to dwie strony jakiegoś zdobionego przedmiotu płaskiego, pokrytego jedno- lub dwustronnie malowidłem, grafiką lub drukiem, zawierającego płaskorzeźbę, wizerunek wykonany metodą rycia, kucia lub zdobionego w jeszcze inny sposób. Oba pojęcia funkcjonują wyłącznie razem, gdy w danym przedmiocie występuje swobodny dostęp do obu jego powierzchni, przy czym jedna z nich jest wyłączną lub główną stroną zawierającą przedstawiane treści.
    Linia prosta lub prosta – jedno z podstawowych pojęć geometrii, szczególny przypadek nieograniczonej z obydwu stron krzywej o nieskończonym promieniu krzywizny w każdym punkcie.
    Teoria miary (zwana też teorią miary i całki) - dział analizy matematycznej zajmujący się własnościami ogólnie rozumianych miar zbiorów. Teoria miary bada σ-algebry, funkcje mierzalne oraz całki.

    Reklama