• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Pole powierzchni



    Podstrony: 1 [2] [3]
    Przeczytaj także...
    Zbiory rozłączne – dwa zbiory, których część wspólna jest zbiorem pustym. Inaczej mówiąc, zbiory nie mające wspólnego elementu.Continuum - w topologii ogólnej, niepusta przestrzeń topologiczna, która jest zarazem zwarta i spójna. Teoria continuów jest gałęzią topologii zajmującą się studiowaniem własności continuów i odwzorowań między nimi. Continua dzieli się zasadniczo na dwie klasy:

    Pole powierzchni (potocznie krótko pole lub powierzchnia) – miara przyporządkowująca danej figurze nieujemną liczbę w pewnym sensie charakteryzującą jej rozmiar.

    Ścisła definicja wymaga wykonania pewnej konstrukcji.

    Konstrukcja pojęcia pola[ | edytuj kod]

    I Definicja[ | edytuj kod]

    Najczęściej spotykana definicja (i jedna z najogólniejszych) odwołuje się do następującej konstrukcji:

    Trójkąt równoboczny – trójkąt, którego wszystkie boki mają taką samą długość (oznaczmy ją a {displaystyle a,} ). Taki trójkąt ma następujące własności:Figura geometryczna – w geometrii inna nazwa podzbioru danej przestrzeni, zwykle przestrzeni euklidesowej, afinicznej lub rzutowej.
    1. Pokrywamy całą płaszczyznę, na której znajduje się dana figura, siatką przylegających kwadratów o bokach
    2. Liczbę kwadratów mających choćby jeden punkt wspólny z figurą, której powierzchnię mierzymy, oznaczamy przez

    Tworząc rozmaite siatki kwadratów o coraz mniejszych bokach i tak dalej, uzyskujemy ciąg liczb

    Aksjomat determinacji, AD (od ang. axiom of determinacy) – aksjomat teorii mnogości postulujący zdeterminowanie pewnych gier nieskończonych. Implikuje on, że aksjomat wyboru jest fałszywy, a zatem unieważnia paradoksy wynikające z tego ostatniego. Niesprzeczność AD jest równoważna z niesprzecznością istnienia pewnych dużych liczb kardynalnych. Wielokąt foremny – wielokąt, który ma wszystkie kąty wewnętrzne równe i wszystkie boki równej długości. Wszystkie wielokąty foremne są figurami wypukłymi. Wielokątem foremnym o najmniejszej możliwej liczbie boków (3) jest trójkąt równoboczny. Teoretycznie jest możliwy do skonstruowania dwukąt foremny, ale jest to przypadek zdegenerowany, wyglądałby on jak zwykły odcinek, a kąt między bokami wynosiłby 0 ∘   {displaystyle 0^{circ } } . Czworokąt foremny to inaczej kwadrat.

    Polem powierzchni nazywamy granicę:

    Granica ta nie zawsze istnieje. Jeśli nie istnieje, pola powierzchni nie da się obliczyć tą metodą.

    Wymiar pudełkowy (objętościowy, pojemnościowy) - uogólnienie intuicyjnego pojęcia wymiaru, zdefiniowane przez Andrieja Kołmogorowa.Ciąg – w matematyce pojęcie oddające intuicję ponumerowania, czy też uporządkowania elementów zbioru. W zależności od rodzaju elementów zbioru stosuje się różne nazwy: w przypadku liczb mówi się o ciągach liczbowych, bądź bardziej precyzyjnie, np. w przypadku zbioru liczb całkowitych, rzeczywistych czy zespolonych, ciąg nazywa się wtedy odpowiednio ciągiem całkowitoliczbowym, rzeczywistym i zespolonym. Jeśli elementami zbioru są funkcje, to ciąg nazywa się ciągiem funkcyjnym. Ciąg powstały poprzez wybranie elementów innego ciągu nazywa się podciągiem.

    Co więcej, konstrukcja ta ma jeszcze jedną wadę – choć dobrze sprawdza się w typowych wypadkach, jednak nie ma podstawowej własności, która intuicyjnie powinna charakteryzować pole powierzchni: suma pól dwóch rozłącznych figur może być większa niż pole figury powstałej z ich połączenia.

    Problem wyznaczania pól powierzchni dla wszystkich figur[ | edytuj kod]

  • Zbiory
  • są wymierne oraz jest niewymierny lub jest niewymierny są rozłączne i oba mają zewnętrzną miarę Jordana równą 1. Suma tych dwóch figur (czyli wnętrze kwadratu) ma pole powierzchni równe 1, skąd możemy wnioskować że pola tych figur nie można zdefiniować, używając podejścia Jordana.
  • Istnienie nietrywialnej funkcji, którą dałoby się zmierzyć dowolną figurę i która dla dowolnego ciągu przeliczalnego rozłącznych figur dawałaby wynik równy ich sumie, jest niedowodliwe w standardowym systemie aksjomatów ZFC.
  • Zbiór Vitalego i zbiór Bernsteina (istniejące przy założeniu aksjomatu wyboru) są niemierzalne w sensie Lebesgue’a.
  • Przy założeniu aksjomatu wyboru istnieje skończenie addytywna miara mierząca wszystkie podzbiory przestrzeni.
  • Przy założeniu AD, wszystkie podzbiory przestrzeni euklidesowych są mierzalne w sensie Lebesgue’a.
  • Jeśli istnieje liczba mierzalna, to jest niesprzeczne że continuum jest rzeczywiście mierzalne i że istnieje miara na płaszczyźnie mierząca wszystkie jej podzbiory.
  • Płaszczyzna – jedno z podstawowych pojęć pierwotnych geometrii Euklidesa i geometrii absolutnej. W niektórych innych aksjomatyzacjach geometrii, na przykład w geometrii analitycznej, płaszczyzna nie jest pojęciem pierwotnym, lecz zbiorem punktów.Miara Jordana – formalizacja pojęcia rozmiaru, czyli np. długości, pola danej figury, objętości bryły. Nosi ona nazwisko francuskiego matematyka Camille’a Jordana, który wprowadził ją pod koniec dziewiętnastego wieku. Obecnie częściej stosuje się miarę Lebesgue’a będącą uogólnieniem miary Jordana na szerszą klasę zbiorów.


    Podstrony: 1 [2] [3]




    Warto wiedzieć że... beta

    Aksjomat wyboru (ozn. AC od ang. Axiom of Choice) – jeden z aksjomatów teorii mnogości mówiący o możliwości skonstruowania zbioru (nazywanego selektorem) zawierającego dokładnie po jednym elemencie z każdego zbioru należącego do rodziny niepustych zbiorów rozłącznych.
    Wzór Picka – praktyczny wzór na obliczanie pola powierzchni wielokąta prostego, którego wierzchołki znajdują się w punktach regularnej kwadratowej sieci na płaszczyźnie. Zgodnie z tym wzorem pole wielokąta jest równe:
    Trójkąt – wielokąt o trzech bokach. Trójkąt to najmniejsza (w sensie inkluzji) figura wypukła i domknięta, zawierająca pewne trzy ustalone i niewspółliniowe punkty płaszczyzny (otoczka wypukła wspomnianych trzech punktów).
    Stosunek – ilorazowe odniesienie jednej wartości do drugiej. Zapisywany jest często w postaci ułamka lub przy użyciu znaku dzielenia.
    Całka oznaczona – w matematyce, w zależności od kontekstu, synonim nazwy "całka Riemanna" albo ogólniej: określenie odnoszące się do tych pojęć całki, dla których zachodzi pewna wersja wzoru Newtona-Leibniza, jak na przykład:
    Aksjomaty Zermela-Fraenkla, aksjomatyka Zermela-Fraenkla, w skrócie: aksjomaty(ka) ZF – powszechnie przyjmowany układ aksjomatów teorii mnogości zaproponowany przez Ernsta Zermela w 1904 roku i później uzupełniony przez Abrahama Fraenkla.
    Miara – rozważana w matematyce funkcja służąca określeniu „wielkości” zbiorów poprzez przypisanie im pewnej nieujemnej liczby.

    Reklama

    Czas generowania strony: 0.025 sek.