• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Podgrupa torsyjna



    Podstrony: 1 [2] [3]
    Przeczytaj także...
    Grupa diedralna a. dwuścianu – w teorii grup, dziale algebry, grupa przekształceń, mianowicie izometrii płaszczyznowych, wielokąta foremnego przekształcająca go na siebie (tzw. „izometrii własnych”) albo ogólniej: dowolna grupa o strukturze identycznej ze strukturą grupy symetrii tego wielokąta (tzn. z nią izomorficzną); zarazem jest to grupa izometrii parzystych (tzn. zachowujących orientację) dwuścianu foremnego w trójwymiarowej przestrzeni euklidesowej: symetriom wielokąta odpowiadają obroty przestrzeni trójwymiarowej.Liczba pierwsza – liczba naturalna większa od 1, która ma dokładnie dwa dzielniki naturalne: jedynkę i siebie samą, np.

    Podgrupa torsyjnapodgrupa danej grupy składająca się ze wszystkich elementów skończonego rzędu. Grupę abelową nazywa się torsyjną albo periodyczną, jeżeli każdy jej element ma skończony rząd i beztorsyjną, jeśli dowolny nietożsamościowy element tej grupy jest nieskończonego rzędu (istnieją więc grupy, które nie są ani torsyjne, ani beztorsyjne). Podgrupę torsyjną oznacza się symbolem Niekiedy spotyka się również nazwę maksymalna podgrupa torsyjna zaznaczająca, iż podgrupa składa się z wszystkich elementów torsyjnych (w dalszej części artykułów pod nazwą „podgrupa torsyjna” będzie się rozumieć podgrupę o właśnie tych własnościach).

    Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.Funktor – w teorii kategorii semantycznych wyrażenie, które nie jest nazwą ani zdaniem, służące do konstrukcji wyrażeń bardziej złożonych – nazw, zdań lub bardziej złożonych funktorów. Wyrażenie, wraz z którym dany funktor tworzy wyrażenie bardziej złożone, to argument funktora.

    Dowód zamkniętości ze względu na dodawanie opiera się na przemienności dodawania (zob. sekcja Przykłady).

    Jeżeli jest abelowa, to jej podgrupa torsyjna jest całkowicie niezmienniczą podgrupą grupy a jej grupa ilorazowa jest beztorsyjna (jest to maksymalna grupa o tej własności, przy czym jest ona wyznaczona jednoznacznie). Istnieje funktor kowariantny z kategorii grup abelowych w kategorię grup torsyjnych, który odwzorowuje każdą grupę na jej podgrupę torsyjną, a każdy homomorfizm na jego zawężenie do podgrupy torsyjnej. Z tego względu podgrupę torsyjną grupy oznacza się czasem symbolem Istnieje również inny funktor kowariantny z kategorii grup abelowych w kategorię grup beztorsyjnych przekształcający każdą grupę w jej iloraz przez jej podgrupę torsyjną i każdy homomorfizm w odpowiednio indukowany homomorfizm (który jest dobrze określony, co dość łatwo sprawdzić).

    Rząd – w teorii grup pojęcie oddające intuicję „rozmiaru” (w sensie „rzędu wielkości”) danej grupy i ułatwiające przy tym opis jej podgrup; w szczególności rzędem elementu nazywa się rząd („rozmiar”) najmniejszej (pod)grupy zawierającej ten element.Ranga grupy abelowej – w algebrze, uogólnienie pojęcia rangi grupy abelowej wolnej na dowolne grupy abelowe; można ją postrzegać jako najmniejszą liczbę elementów generujących daną grupę abelową. Ranga grupy abelowej wyznacza rozmiar największej grupy abelowej wolnej zawartej w tej grupie. Jeżeli grupa jest beztorsyjna, to rangę można traktować analogicznie do wymiaru przestrzeni liniowej: jest to w istocie wymiar najmniejszej przestrzeni liniowej nad ciałem liczb wymiernych, w której można zanurzyć daną grupę abelową.

    Jeżeli jest skończenie generowana i abelowa, to można ją zapisać jako sumę prostą jej podgrupy torsyjnej i jej podgrupy beztorsyjnej (nie jest to jednak prawdą w przypadku nieskończenie generowanych grup abelowych). W dowolnym rozkładzie na sumę prostą podgrupy torsyjnej i jej części beztorsyjnej musi być równa (część beztorsyjna nie jest wyznaczona jednoznacznie). Jest to kluczowa obserwacja przy klasyfikacji skończenie generowanych grup abelowych.

    Moduł – struktura algebraiczna będąca uogólnieniem przestrzeni liniowej. Ponieważ grupy abelowe można postrzegać jako moduły nad pierścieniem liczb całkowitych, to teoria modułów znajduje zastosowanie w wielu działach algebry i innych dziedzinach matematyki.Grupa ilorazowa – w teorii grup zbiór warstw danej grupy względem jej pewnej podgrupy normalnej, tj. szczególny podział grupy (na niepuste podzbiory) uwzględniający jej strukturę, który sam tworzy grupę z naturalnie określonym działaniem pochodzącym od grupy wyjściowej. Z teoriomnogościowego punktu widzenia jest to zbiór ilorazowy, w którym wprowadzono zgodne z działaniem w grupie działanie na klasach relacji równoważności wyznaczającej wspomniany podział.


    Podstrony: 1 [2] [3]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Grupa nilpotentna – w teorii grup, intuicyjnie grupa „prawie” abelowa. Grupy nilpotentne pojawiają się w teorii Galois, a także w zagadnieniach związanych z klasyfikacją grup, również grup Liego.
    Skończenie generowana grupa przemienna – w algebrze abstrakcyjnej grupa przemienna (abelowa), której zbiór generatorów jest skończony. W szczególności, każda skończona grupa abelowa jest skończenie generowana.
    Grupa torsyjna a. periodyczna – grupa, w której wszystkie jej elementy są skończonego rzędu. Wszystkie grupy skończone są torsyjne. Pojęcia periodyczności grupy nie należy mylić z jej cyklicznością, choć wszystkie skończone grupy cykliczne są periodyczne.
    Zbiór przeliczalny – intuicyjnie, zbiór którego elementy można ustawić w ciąg (skończony bądź nie), tzn. "wypisać je po kolei", "ponumerować". Istnieją dwie nierównoważne konwencje użycia terminu zbiór przeliczalny w matematyce:
    Grupa abelowa wolna – grupa abelowa będąca zarazem algebrą wolną. Grupa abelowa jest wolna wtedy i tylko wtedy, gdy ma podzbiór o tej własności, że każdy element grupy daje się jednoznacznie przedstawić jako kombinacja liniowa o współczynnikach całkowitych elementów tego zbioru. Podobnie jak w przypadku przestrzeni liniowych, zbiór taki nazywany jest bazą. Z punktu widzenia teorii modułów, grupy abelowe wolne są modułami wolnymi nad pierścieniem liczb całkowitych.
    Podgrupa normalna (niezmiennicza, dzielnik normalny) – rodzaj podgrupy umożliwiający badanie struktury grupy poprzez grupy ilorazowe, w których podgrupa ta jest utożsamiana z elementem neutralnym.
    Iloczyny (produkty) grup – w teorii grup są to sposoby budowania nowych grup z dobrze już znanych, jak również metody opisu bardziej skomplikowanych grup przez inne, mniejsze, o znanej strukturze, np. każda grupa abelowa skończenie generowana jest iloczynem prostym grup cyklicznych.

    Reklama

    Czas generowania strony: 0.043 sek.