• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Podciąg - matematyka

    Przeczytaj także...
    Ciąg – w matematyce pojęcie oddające intuicję ponumerowania, czy też uporządkowania elementów zbioru. W zależności od rodzaju elementów zbioru stosuje się różne nazwy: w przypadku liczb mówi się o ciągach liczbowych, bądź bardziej precyzyjnie, np. w przypadku zbioru liczb całkowitych, rzeczywistych czy zespolonych, ciąg nazywa się wtedy odpowiednio ciągiem całkowitoliczbowym, rzeczywistym i zespolonym. Jeśli elementami zbioru są funkcje, to ciąg nazywa się ciągiem funkcyjnym. Ciąg powstały poprzez wybranie elementów innego ciągu nazywa się podciągiem.Liczby naturalne – liczby służące podawaniu liczności (trzy osoby, zob. liczebnik główny/kardynalny) i ustalania kolejności (trzecia osoba, zob. liczebnik porządkowy), poddane w matematyce dalszym uogólnieniom (odpowiednio: liczby kardynalne, liczby porządkowe). Badaniem własności liczb naturalnych zajmują się arytmetyka i teoria liczb. Według finitystów, zwolenników skrajnego nurtu filozofii matematyki, są to jedyne liczby, jakimi powinna zajmować się matematyka - słynne jest stwierdzenie propagatora arytmetyzacji wszystkich dziedzin matematyki Leopolda Kroneckera: Liczby całkowite stworzył dobry Bóg. Reszta jest dziełem człowieka.
    Twierdzenie Bolzano-Weierstrassa – jeden z podstawowych wyników w analizie matematycznej. Mówi ono, że każdy ograniczony ciąg liczb rzeczywistych zawiera podciąg zbieżny. We współczesnym języku oznacza to, że domknięte i ograniczone podzbiory prostej rzeczywistej są ciągowo zwarte.

    Podciągciąg powstały poprzez wybranie pewnej liczby (być może nieskończonej) wyrazów ciągu wyjściowego. Odpowiednikiem podciągów dla ciągów uogólnionych są subtelniejsze ciągi uogólnione.

    Ważnym twierdzeniem dotyczącym podciągów jest twierdzenie Bolzano-Weierstrassa, którego konsekwencją jest (ciągowa) zwartość ograniczonych i domkniętych podzbiorów prostej rzeczywistej.

    Definicja[]

    Niech będzie ciągiem elementów zbioru oraz niech będzie silnie rosnącym ciągiem w zbiorze indeksowym (będącym dowolnym podzbiorem liczb naturalnych, zwykle przyjmuje się, że zawiera kolejne liczby naturalne). Wówczas ciąg nazywa się podciągiem ciągu .

    Ciąg uogólniony - w teorii mnogości, rozszerzenie pojęcia ciągu na odwzorowania zbiorów skierowanych w dowolne zbiory. Dla ciągów uogólnionych możemy wprowadzać pojęcie zbieżności czy punktów skupienia. W szczególności, każdy ciąg jest ciągiem uogólnionym.Zbiór ograniczony – termin w matematyce używany na określenie zbiorów w pewnym sensie małych. Dokładna definicja tego pojęcia zależy od kontekstu w którym jest ono wprowadzane.

    Przykład[]

    Ciąg ABD jest podciągiem ABCDEFG.




    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Reklama

    Czas generowania strony: 0.02 sek.