• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Początek - matematyka

    Przeczytaj także...
    Przestrzeń euklidesowa – przestrzeń o geometrii euklidesowej. Jest ona naturalnym elementem modeli świata rzeczywistego (łac. geometria = mierzenie ziemi) i stanowi dobre przybliżenie przestrzeni fizycznych w warunkach makroskopowych, jednak nie nadaje się do opisu rzeczywistości w bardzo małych, atomowych, lub bardzo wielkich, astronomicznych, wielkościach. Jednowymiarowa przestrzeń euklidesowa nazywana jest prostą euklidesową, zaś dwuwymiarowa – płaszczyzną euklidesową. Przestrzenie te nazywa się również przestrzeniami afinicznymi euklidesowymi w odróżnieniu od przestrzeni liniowych euklidesowych, znanych szerzej jako przestrzenie unitarne.Prostopadłość – cecha geometryczna dwóch prostych lub płaszczyzn (albo prostej i płaszczyzny), które tworzą przystające kąty przyległe.
    Płaszczyzna – jedno z podstawowych pojęć pierwotnych geometrii Euklidesa i geometrii absolutnej. W niektórych innych aksjomatyzacjach geometrii, na przykład w geometrii analitycznej, płaszczyzna nie jest pojęciem pierwotnym, lecz zbiorem punktów.
    Początek układu współrzędnych kartezjańskich.

    Początek – szczególny punkt w przestrzeni euklidesowej, zwykle oznaczany literą bądź cyfrą używany jako punkt odniesienia dla geometrii otaczającej go przestrzeni. W układzie współrzędnych kartezjańskich początek to punkt, gdzie przecinają się osie układu. W geometrii euklidesowej początek może być wybrany według życzenia jako dogodny punkt odniesienia.

    Układ współrzędnych – funkcja przypisująca każdemu punktowi danej przestrzeni (w szczególności przestrzeni dwuwymiarowej – płaszczyzny, powierzchni kuli itp.) skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu.Układ współrzędnych kartezjańskich (prostokątny) – prostoliniowy układ współrzędnych o parach prostopadłych osi. Nazwa pojęcia pochodzi od łacińskiego nazwiska francuskiego matematyka i filozofa Kartezjusza (wł. René Descartes), który wprowadził te idee w 1637 w traktacie La Géométrie, (wcześniej układ taki stosował, choć nie rozpropagował go, Pierre de Fermat).

    Większość popularnych układów współrzędnych to układy dwu- (dla płaszczyzny) i trójwymiarowe (dla przestrzeni), które mają odpowiednio dwie lub trzy prostopadłe osie. Początek dzieli każdą z tych osi na dwie połowy: półoś dodatnią i ujemną. Punkty mogą być wskazane względem początku poprzez podanie ich współrzędnych liczbowych, tzn. pozycji ich rzutów wzdłuż każdej z osi, tak w kierunku dodatnim, jak i ujemnym. Współrzędne początku zawsze są zerami, np. w dwóch wymiarach oraz w trzech.

    Przestrzeń – zbiór, w którym określone są rozmaite relacje i działania pomiędzy jego elementami. Synonim pojęcia struktury matematycznej używany dla oddania pewnych intuicji matematycznych oraz w celu skrócenia wypowiedzi.Geometria euklidesowa – klasyczna odmiana geometrii opisana po raz pierwszy przez Euklidesa w dziele Elementy (z III w. p.n.e.). Zebrał on całą ówczesną wiedzę matematyczną znaną Grekom, dziś jego dzieło przedstawia się jako pierwszą znaną aksjomatyzację w historii matematyki. Pierwotnie uprawiano ją jedynie na płaszczyźnie i w przestrzeni trójwymiarowej wiążąc ją jednocześnie ze światem fizycznym, który miała opisywać, nie dopuszczając tym samym możliwości badania innych odmian geometrii.


    Symetria względem początku[]

     Zapoznaj się również z: symetria środkowafunkcje parzyste i nieparzyste.
    Wykres jest symetryczny względem początku, ponieważ odbity względem osi X oraz Y pozostaje niezmieniony.

    Wykres symetryczny względem początku to wykres, który wygląda tak samo przed i po obrocie o Formalnie mówi się, że wykres jest symetryczny względem początku, jeżeli nie ulega zmianie przy odbiciu względem obu osi oraz

    Symetria środkowa o środku P (symetria względem punktu P) – odwzorowanie geometryczne SP prostej, płaszczyzny lub przestrzeni takie, że SP(Q) = R wtedy i tylko wtedy, gdy punkt P, nazywany środkiem symetrii środkowej, jest środkiem odcinka QR. Punkty Q i R nazywa się punktami symetrycznymi względem środka symetrii P.Punkt –  w najogólniejszym ujęciu – to element pewnego zbioru. Np. w zbiorze liczb punktem będzie liczba, w zbiorze samochodów - punktem będzie jakiś samochód. Punkt – rozważany w geometrii – to bezwymiarowy obiekt geometryczny; pojęcie punktu stanowi jedno z podstawowych pojęć geometrii; punkt ma zerowe rozmiary, dwa punkty mogą więc różnić się tylko położeniem. Punkty zaznacza się na rysunku jako × (krzyżyk), kółko lub kropkę i tradycyjnie oznacza wielkimi literami alfabetu łacińskiego (A, B, C).



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Reklama

    Czas generowania strony: 0.023 sek.