• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Permutacja



    Podstrony: [1] 2 [3] [4]
    Przeczytaj także...
    Moc zbioru – własność zbioru, która opisuje jego liczebność. Nieformalnie, moc zbioru jest tym większa im większy jest zbiór. Pojęcie mocy zbioru opiera się na pojęciu równoliczności dwóch zbiorów – zbiory A i B są równoliczne, gdy każdy element zbioru A można połączyć w parę z dokładnie jednym elementem zbioru B, innymi słowy istnieje bijekcja (funkcja różnowartościowa i "na") między zbiorami A i B. Zbiory równoliczne mają tę samą moc. Moce zbiorów są konkretnymi obiektami matematycznymi, nazywanymi liczbami kardynalnymi.Wariacją bez powtórzeń k-wyrazową zbioru n-elementowego A (1 ≤ k ≤ n) nazywa się każdy k-wyrazowy ciąg k różnych elementów tego zbioru (kolejność tych elementów ma znaczenie). Gdy k=n, wariację bez powtórzeń nazywa się permutacją.
    Grupa permutacji[]
     Osobny artykuł: grupa permutacji.

    Zbiór wszystkich permutacji zbioru wraz z działaniem składania funkcji stanowi grupę nazywaną grupą permutacji. Jeśli jest zbiorem -elementowym, to grupa jest izomorficzna z : niech będzie bijekcją. Wówczas odwzorowanie

    Teoria grup – dział algebry, uważany za dość autonomiczną dziedzinę matematyki (w szczególności teoria grup abelowych, czyli przemiennych), który bada własności struktur algebraicznych nazywanych grupami, czyli zbiorów z wyróżnionym łącznym dwuargumentowym działaniem wewnętrznym mającym element neutralny i w którym każdy element jest odwracalny.Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.

    jest izomorfizmem grup. Podobnie można pokazać, że jeśli zbiory równoliczne, to grupy są izomorficzne, a więc nierozróżnialne na gruncie teorii grup.

    Kryptologia (z gr. κρυπτός – kryptos – "ukryty" i λόγος – logos – "słowo") – dziedzina wiedzy o przekazywaniu informacji w sposób zabezpieczony przed niepowołanym dostępem. Współcześnie kryptologia jest uznawana za gałąź zarówno matematyki, jak i informatyki; ponadto jest blisko związana z teorią informacji, inżynierią oraz bezpieczeństwem komputerowym.Enigma (z gr. αινιγμα, wym. enigma, pl. zagadka) – niemiecka przenośna, elektromechaniczna maszyna szyfrująca, oparta na zasadzie obracających się wirników, opracowana przez Artura Scherbiusa, a następnie produkowana przez wytwórnię Scherbius & Ritter. Wytwórnia ta została założona w 1918 z inicjatywy Scherbiusa oraz innego niemieckiego inżyniera Richarda Rittera i zajmowała się konstrukcją i produkcją urządzeń elektrotechnicznych, między innymi silników asynchronicznych. Scherbius odkupił prawa patentowe do innej wirnikowej maszyny szyfrującej, opracowanej przez holenderskiego inżyniera Hugona Kocha.

    Rząd grupy , czyli moc zbioru wszystkich permutacji zbioru -elementowego, to możliwa liczba uporządkowań tego zbioru równa , gdzie wykrzyknik oznacza silnię. W kombinatoryce na oznaczenie liczności tego zbioru stosuje się również symbol .

    Ciąg – w matematyce pojęcie oddające intuicję ponumerowania, czy też uporządkowania elementów zbioru. W zależności od rodzaju elementów zbioru stosuje się różne nazwy: w przypadku liczb mówi się o ciągach liczbowych, bądź bardziej precyzyjnie, np. w przypadku zbioru liczb całkowitych, rzeczywistych czy zespolonych, ciąg nazywa się wtedy odpowiednio ciągiem całkowitoliczbowym, rzeczywistym i zespolonym. Jeśli elementami zbioru są funkcje, to ciąg nazywa się ciągiem funkcyjnym. Ciąg powstały poprzez wybranie elementów innego ciągu nazywa się podciągiem.Silnią liczby naturalnej n (w notacji matematycznej: n!, co czytamy „n silnia”) nazywamy iloczyn wszystkich liczb naturalnych nie większych niż n. Oznaczenie n! wprowadził w 1808 roku Christian Kramp.

    Składanie permutacji[]

     Osobny artykuł: złożenie funkcji.

    Złożeniem permutacji jest permutacja zadana wzorem

    Marian Adam Rejewski (ur. 16 sierpnia 1905 w Bydgoszczy, zm. 13 lutego 1980 w Warszawie) – polski matematyk i kryptolog, który w 1932 roku złamał szyfr Enigmy, najważniejszej maszyny szyfrującej używanej przez hitlerowskie Niemcy. Sukces Rejewskiego i współpracujących z nim kryptologów z Biura Szyfrów, między innymi Henryka Zygalskiego i Jerzego Różyckiego, umożliwił odczytywanie przez Brytyjczyków zaszyfrowanej korespondencji niemieckiej podczas II wojny światowej przyczyniając się do wygrania wojny przez aliantów.Zbiór skończony − zbiór o skończonej liczbie elementów. Nieujemną liczbę naturalną określającą ilość elementów zbioru skończonego nazywa się mocą zbioru. Zbiór skończony ma moc skończoną. Najmniejszym zbiorem skończonym jest zbiór pusty  Ø.
    dla . Przykład  .

    Permutacja odwrotna[]

     Osobny artykuł: funkcja odwrotna.

    Permutacja , odwrotna do permutacji , odwzorowującej wiersz górny na dolny, to permutacja odwzorowująca dolny wiersz na górny: aby uzyskać jej zapis, należy zamienić porządek wierszy i (dla wygody) uporządkować rosnąco kolumny.

    Rząd – w teorii grup pojęcie oddające intuicję „rozmiaru” (w sensie „rzędu wielkości”) danej grupy i ułatwiające przy tym opis jej podgrup; w szczególności rzędem elementu nazywa się rząd („rozmiar”) najmniejszej (pod)grupy zawierającej ten element.Zbiór – pojęcie pierwotne teorii zbiorów (znanej szerzej jako teoria mnogości; za jej twórcę uważa się Georga Cantora) leżące u podstaw całej matematyki; intuicyjnie jest to nieuporządkowany zestaw różnych obiektów, czy też kolekcja niepowtarzających się komponentów bez wyróżnionej kolejności.

    W zapisie macierzowym, macierz permutacji , odwrotnej do permutacji , to transpozycja macierzy permutacji .

    Funkcja odwrotna – funkcja przyporządkowująca wartościom jakiejś funkcji jej odpowiednie argumenty, czyli działająca odwrotnie do niej.Funkcja (łac. functio, -onis, „odbywanie, wykonywanie, czynność”) – dla danych dwóch zbiorów X i Y przyporządkowanie każdemu elementowi zbioru X dokładnie jednego elementu zbioru Y. Oznacza się ją na ogół f, g, h itd.
    Przykład  Jeśli , to . W zapisie macierzowym, ta sama permutacja ma macierz: , a permutacja , odwrotna do , ma macierz .

    Znak permutacji[]

    Znak permutacji definiujemy jako znak wyznacznika macierzy tej permutacji. Można na to spojrzeć też w inny sposób: każdą permutację można otrzymać za pomocą złożenia różnych ilości przestawień (transpozycji) par elementów. Takie przedstawienie permutacji nie jest jednoznaczne i można zmienić ilość użytych transpozycji, niemniej jednak liczba transpozycji w takiej reprezentacji jest zawsze albo parzysta albo nieparzysta. Inaczej mówiąc, parzystość liczby transpozycji jest niezmiennikiem tej operacji. Wynika to z faktu, że każda transpozycja zmienia całkowitą liczbę inwersji o liczbę nieparzystą. Permutację, która ma parzystą liczbę inwersji nazywamy parzystą (lub dodatnią), zaś jeśli ma ona nieparzystą liczbę inwersji to nazywamy ją permutacją nieparzystą (lub ujemną).

    Funkcja „na” a. surjekcja pisane też czasami jako suriekcja – funkcja przyjmująca jako swoje wartości wszystkie elementy przeciwdziedziny, tj. której obraz jest równy przeciwdziedzinie.Izomorfizm (gr. isos – równy, morphe – kształt) − funkcja wzajemnie jednoznaczna z jednego obiektu matematycznego w drugi, która zachowuje funkcje, relacje i wyróżnione elementy.

    Cykle[]

    Cyklem nazywamy każdą permutację postaci: .

    Zazwyczaj, gdy operujemy na cyklach opuszczamy część: , gdyż nie wnosi ona nic nowego.

    Funkcja wzajemnie jednoznaczna (bijekcja) – funkcja będąca jednocześnie funkcją różnowartościową i "na". Innymi słowy, bijekcja to funkcja (relacja) taka, że każdemu elementowi obrazu odpowiada dokładnie jeden element dziedziny.Grupa permutacji – grupa wszystkich bijekcji pewnego zbioru w siebie (czyli permutacji) z działaniem składania pełniącego rolę działania grupowego i identycznością jako elementem neutralnym. Elementem odwrotnym do danego jest funkcja (permutacja) odwrotna do danej, która zawsze istnieje z definicji bijekcji.

    Zapis cyklu możemy jeszcze uprościć. Wystarczy zauważyć że dolny wiersz naszego symbolu oznaczającego cykl można jednoznacznie odtworzyć z górnego. Zatem nasz ostateczny uproszczony symbol przybiera postać:

    Można udowodnić (choć jest to dość intuicyjne), że każdą permutację można przedstawić jako złożenie rozłącznych (niezależnych), a więc i różnych, cykli. Ponieważ cykle są różne i wszystkie należą do zbioru , o ilości elementów , więc .

    Macierz – w matematyce układ liczb, symboli lub wyrażeń zapisanych w postaci prostokątnej tablicy. Choć słowo „macierz” oznacza najczęściej macierz dwuwskaźnikową, to możliwe jest rozpatrywanie macierzy wielowskaźnikowych (zob. notacja wielowskaźnikowa). Macierze jednowskaźnikowe nazywa się często wektorami wierszowymi lub kolumnowymi, co wynika z zastosowań macierzy w algebrze liniowej. W informatyce macierze modeluje się zwykle za pomocą (najczęściej dwuwymiarowych) tablic.Kontrola autorytatywna – w terminologii bibliotekoznawczej określenie procedur zapewniających utrzymanie w sposób konsekwentny haseł (nazw, ujednoliconych tytułów, tytułów serii i haseł przedmiotowych) w katalogach bibliotecznych przez zastosowanie wykazu autorytatywnego zwanego kartoteką wzorcową.

    Składanie permutacji, podobnie jak większości funkcji, nie jest przemienne. Nie dotyczy to sytuacji, gdy składamy permutacje rozłączne (niezależne). Ponieważ permutacjami rozłącznymi są rozłączne cykle to zachodzi następujące twierdzenie: , gdzie jest rozkładem permutacji na rozłącznych cykli. Przykłady Cyklem jest permutacja: którą można zapisać jako Rozkład na cykle

    Matematyka (z łac. mathematicus, od gr. μαθηματικός mathēmatikós, od μαθηματ-, μαθημα mathēmat-, mathēma, „nauka, lekcja, poznanie”, od μανθάνειν manthánein, „uczyć się, dowiedzieć”; prawd. spokr. z goc. mundon, „baczyć, uważać”) – nauka dostarczająca narzędzi do otrzymywania ścisłych wniosków z przyjętych założeń, zatem dotycząca prawidłowości rozumowania. Ponieważ ścisłe założenia mogą dotyczyć najróżniejszych dziedzin myśli ludzkiej, a muszą być czynione w naukach ścisłych, technice a nawet w naukach humanistycznych, zakres matematyki jest szeroki i stale się powiększa.


    Podstrony: [1] 2 [3] [4]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Reklama

    Czas generowania strony: 0.148 sek.