• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Permutacja



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Moc zbioru – własność zbioru, która opisuje jego liczebność. Nieformalnie, moc zbioru jest tym większa im większy jest zbiór. Pojęcie mocy zbioru opiera się na pojęciu równoliczności dwóch zbiorów – zbiory A i B są równoliczne, gdy każdy element zbioru A można połączyć w parę z dokładnie jednym elementem zbioru B, innymi słowy istnieje bijekcja (funkcja różnowartościowa i "na") między zbiorami A i B. Zbiory równoliczne mają tę samą moc. Moce zbiorów są konkretnymi obiektami matematycznymi, nazywanymi liczbami kardynalnymi.Wariacją bez powtórzeń k-wyrazową zbioru n-elementowego A (1 ≤ k ≤ n) nazywa się każdy k-wyrazowy ciąg k różnych elementów tego zbioru (kolejność tych elementów ma znaczenie). Gdy k=n, wariację bez powtórzeń nazywa się permutacją.

    Permutacja (łac. permutatio „zmiana, wymiana”) – wzajemnie jednoznaczne przekształcenie pewnego zbioru na siebie. Najczęściej termin ten oznacza funkcję na zbiorach skończonych.

    Permutacje zbiorów skończonych mogą być utożsamiane z ustawianiem elementów zbioru w pewnej kolejności. W poniższym artykule zbiór wszystkich permutacji zbioru będzie oznaczany jeżeli to zapisywany on będzie symbolem (zob. pozostałe oznaczenia w artykule o grupach permutacji).

    Teoria grup – dział algebry, uważany za dość autonomiczną dziedzinę matematyki (w szczególności teoria grup abelowych, czyli przemiennych), który bada własności struktur algebraicznych nazywanych grupami, czyli zbiorów z wyróżnionym łącznym dwuargumentowym działaniem wewnętrznym mającym element neutralny i w którym każdy element jest odwracalny.Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.

    Zapis[ | edytuj kod]

    Dla permutacji zbiorów skończonych stosuje się specjalne oznaczenia. Niech wówczas zapisuje się ją jako

    Kryptologia (z gr. κρυπτός – kryptos – "ukryty" i λόγος – logos – "słowo") – dziedzina wiedzy o przekazywaniu informacji w sposób zabezpieczony przed niepowołanym dostępem. Współcześnie kryptologia jest uznawana za gałąź zarówno matematyki, jak i informatyki; ponadto jest blisko związana z teorią informacji, inżynierią oraz bezpieczeństwem komputerowym.Rząd – w teorii grup pojęcie oddające intuicję „rozmiaru” (w sensie „rzędu wielkości”) danej grupy i ułatwiające przy tym opis jej podgrup; w szczególności rzędem elementu nazywa się rząd („rozmiar”) najmniejszej (pod)grupy zawierającej ten element.

    gdzie dla

    Enigma (z gr. αινιγμα, wym. enigma, pl. zagadka) – niemiecka przenośna, elektromechaniczna maszyna szyfrująca, oparta na zasadzie obracających się wirników, opracowana przez Artura Scherbiusa, a następnie produkowana przez wytwórnię Scherbius & Ritter. Wytwórnia ta została założona w 1918 z inicjatywy Scherbiusa oraz innego niemieckiego inżyniera Richarda Rittera i zajmowała się konstrukcją i produkcją urządzeń elektrotechnicznych, między innymi silników asynchronicznych. Scherbius odkupił prawa patentowe do innej wirnikowej maszyny szyfrującej, opracowanej przez holenderskiego inżyniera Hugona Kocha.Ciąg – w matematyce pojęcie oddające intuicję ponumerowania, czy też uporządkowania elementów zbioru. W zależności od rodzaju elementów zbioru stosuje się różne nazwy: w przypadku liczb mówi się o ciągach liczbowych, bądź bardziej precyzyjnie, np. w przypadku zbioru liczb całkowitych, rzeczywistych czy zespolonych, ciąg nazywa się wtedy odpowiednio ciągiem całkowitoliczbowym, rzeczywistym i zespolonym. Jeśli elementami zbioru są funkcje, to ciąg nazywa się ciągiem funkcyjnym. Ciąg powstały poprzez wybranie elementów innego ciągu nazywa się podciągiem.

    Zapis macierzowy[ | edytuj kod]

    Permutację można też zapisać jako macierz dla której

    Silnią liczby naturalnej n (w notacji matematycznej: n!, co czytamy „n silnia”) nazywamy iloczyn wszystkich liczb naturalnych nie większych niż n. Oznaczenie n! wprowadził w 1808 roku Christian Kramp.Marian Adam Rejewski (ur. 16 sierpnia 1905 w Bydgoszczy, zm. 13 lutego 1980 w Warszawie) – polski matematyk i kryptolog, który w 1932 roku złamał szyfr Enigmy, najważniejszej maszyny szyfrującej używanej przez hitlerowskie Niemcy. Sukces Rejewskiego i współpracujących z nim kryptologów z Biura Szyfrów, między innymi Henryka Zygalskiego i Jerzego Różyckiego, umożliwił odczytywanie przez Brytyjczyków zaszyfrowanej korespondencji niemieckiej podczas II wojny światowej przyczyniając się do wygrania wojny przez aliantów.

    Na przykład permutację można zapisać jako

    Zbiór skończony − zbiór o skończonej liczbie elementów. Nieujemną liczbę naturalną określającą ilość elementów zbioru skończonego nazywa się mocą zbioru. Zbiór skończony ma moc skończoną. Najmniejszym zbiorem skończonym jest zbiór pusty  Ø.Zbiór – pojęcie pierwotne teorii zbiorów (znanej szerzej jako teoria mnogości; za jej twórcę uważa się Georga Cantora) leżące u podstaw całej matematyki; intuicyjnie jest to nieuporządkowany zestaw różnych obiektów, czy też kolekcja niepowtarzających się komponentów bez wyróżnionej kolejności.


    Podstrony: 1 [2] [3] [4]




    Warto wiedzieć że... beta

    Funkcja odwrotna – funkcja przyporządkowująca wartościom jakiejś funkcji jej odpowiednie argumenty, czyli działająca odwrotnie do niej.
    Izomorfizm (gr. isos – równy, morphe – kształt) − funkcja wzajemnie jednoznaczna z jednego obiektu matematycznego w drugi, która zachowuje funkcje, relacje i wyróżnione elementy.
    Funkcja wzajemnie jednoznaczna (bijekcja) – funkcja będąca jednocześnie funkcją różnowartościową i "na". Innymi słowy, bijekcja to funkcja (relacja) taka, że każdemu elementowi obrazu odpowiada dokładnie jeden element dziedziny.
    Grupa permutacji – grupa wszystkich bijekcji pewnego zbioru w siebie (czyli permutacji) z działaniem składania pełniącego rolę działania grupowego i identycznością jako elementem neutralnym. Elementem odwrotnym do danego jest funkcja (permutacja) odwrotna do danej, która zawsze istnieje z definicji bijekcji.
    Macierz – w matematyce układ liczb, symboli lub wyrażeń zapisanych w postaci prostokątnej tablicy. Choć słowo „macierz” oznacza najczęściej macierz dwuwskaźnikową, to możliwe jest rozpatrywanie macierzy wielowskaźnikowych (zob. notacja wielowskaźnikowa). Macierze jednowskaźnikowe nazywa się często wektorami wierszowymi lub kolumnowymi, co wynika z zastosowań macierzy w algebrze liniowej. W informatyce macierze modeluje się zwykle za pomocą (najczęściej dwuwymiarowych) tablic.
    Matematyka (z łac. mathematicus, od gr. μαθηματικός mathēmatikós, od μαθηματ-, μαθημα mathēmat-, mathēma, „nauka, lekcja, poznanie”, od μανθάνειν manthánein, „uczyć się, dowiedzieć”; prawd. spokr. z goc. mundon, „baczyć, uważać”) – nauka dostarczająca narzędzi do otrzymywania ścisłych wniosków z przyjętych założeń, zatem dotycząca prawidłowości rozumowania. Ponieważ ścisłe założenia mogą dotyczyć najróżniejszych dziedzin myśli ludzkiej, a muszą być czynione w naukach ścisłych, technice a nawet w naukach humanistycznych, zakres matematyki jest szeroki i stale się powiększa.
    Łacina, język łaciński (łac. lingua Latina, Latinus sermo) – język indoeuropejski z podgrupy latynofaliskiej języków italskich, wywodzący się z Lacjum (łac. Latium), krainy w starożytnej Italii, na północnym skraju której znajduje się Rzym.

    Reklama

    Czas generowania strony: 0.052 sek.