• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Operacja binarna

    Przeczytaj także...
    Mnożenie przez skalar − jedno z działań dwuargumentowych definiujących przestrzeń liniową w algebrze liniowej (lub ogólniej: moduł w algebrze ogólnej). Mnożenia wektora przez skalar dającego w wyniku wektor nie należy mylić z iloczynem skalarnym (nazywanym niekiedy iloczynem wewnętrznym) dwóch wektorów dającym w wyniku skalar.Łączność – jedna z własności działań dwuargumentowych, czyli np. operatorów arytmetycznych. Pojęcie to występuje w dwóch znaczeniach.
    Algebra ogólna – obiekt matematyczny będący przedmiotem badań algebry uniwersalnej. Czasami algebra uniwersalna nazywana jest algebrą ogólną, wówczas rozważane w niej obiekty nazywa się zwykle algebrami abstrakcyjnymi lub po prostu algebrami.

    Działanie dwuargumentowe a. binarnedziałanie algebraiczne o argumentowości równej 2, czyli funkcja przypisująca dwóm elementom inny; wszystkie elementy mogą pochodzić z innych zbiorów.

    Rozdzielność działań jest własnością pierścienia (a więc i ciała) określającą powiązanie dwóch operatorów: addytywnego (nazywanego zwykle dodawaniem) i multiplikatywnego (zwykle mnożenie).Przestrzeń liniowa lub wektorowa – w matematyce zbiór obiektów (nazywanych "wektorami"), które mogą być, nieformalnie rzecz ujmując, skalowane i dodawane. Formalnie jest to zbiór z określonymi dwoma działaniami: dodawaniem elementów tej przestrzeni (wektorów) i mnożeniem przez elementy ustalonego ciała, które związane są ze sobą poniższymi aksjomatami. Przestrzenie liniowe to podstawowy obiekt badań algebry liniowej i analizy funkcjonalnej. Znajdują zastosowanie niemal we wszystkich gałęziach matematyki, naukach ścisłych i inżynierii.

    Oznaczenia[ | edytuj kod]

    Działania, w przeciwieństwie do funkcji zapisywanych zwykle z wykorzystaniem zapisu przedrostkowego, np. opisuje się najczęściej za pomocą zapisu wrostkowego, np. choć nic nie stoi na przeszkodzie, aby korzystać z pozostałych sposobów: dla funkcji (działania) wyróżnia się notacje

    Działanie lub operacja – w matematyce i logice przyporządkowanie jednemu lub większej liczbie elementów nazywanych argumentami lub operandami elementu nazywanego wynikiem. Badaniem działań w ogólności zajmuje się dział nazywany algebrą uniwersalną, zbiory z choć jednym określonym na nim działaniem algebraicznym nazywa się algebrami ogólnymi (często krótko: algebrami), samą rodzinę działań określa się nazwą „sygnatura”.Pierścień – struktura formalizująca własności algebraiczne liczb całkowitych oraz arytmetyki modularnej; intuicyjnie zbiór, którego elementy mogą być bez przeszkód dodawane, odejmowane i mnożone, lecz niekoniecznie dzielone. Badanie pierścieni umożliwiło uogólnienie innych pojęć matematycznych takich, jak np. liczby pierwsze (przez ideały pierwsze), wielomiany, ułamki oraz rozwinięcie teorii podzielności i wskazania przy tym najogólniejszej struktury, w której możliwe jest stosowanie algorytmu Euklidesa (tzw. pierścień Euklidesa). Dział matematyki opisujący te struktury nazywa się teorią pierścieni.
  • przedrostkową, prefiksową lub polską,
  • przyrostkową, postfiksową lub odwrotną polską,
  • wrostkowa, infiksowa,
  • Przykładowo wyrażenie wrostkowe będzie miało następującą postać

    Działanie zeroargumentowe (element wyróżniony) – w algebrze pojęcie służące do zapisu stałej jako działania algebraicznego. Ma ono swoje zastosowanie prawie wyłącznie jako element opisu pewnej algebry ogólnej: krotki zawierającej jako pierwszy element swój nośnik (zbiór elementów), a następnie działania.Wektor (z łac. [now.], „niosący; ten, który niesie; nośnik”, od vehere, „nieść”; via, „droga”) – istotny w matematyce elementarnej, inżynierii i fizyce obiekt mający moduł (zwany też – zdaniem niektórych niepoprawnie - długością lub wartością), kierunek wraz ze zwrotem (określającym orientację wzdłuż danego kierunku).
  • prefiksową:
  • postfiksową:
  • Przewagą notacji przyrostkowej, jak i przedrostkowej nad notacją wrostkowej jest fakt, że nawiasy w wyrażeniach można pominąć nawet wtedy, gdy działanie nie jest łączne.

    Półgrupa – Grupoid ⟨ A , ⊙ ⟩ {displaystyle langle A,odot angle } , którego działanie ⊙ {displaystyle odot } jest łączne, czyli:Zbiór – pojęcie pierwotne teorii zbiorów (znanej szerzej jako teoria mnogości; za jej twórcę uważa się Georga Cantora) leżące u podstaw całej matematyki; intuicyjnie jest to nieuporządkowany zestaw różnych obiektów, czy też kolekcja niepowtarzających się komponentów bez wyróżnionej kolejności.

    Ze względu na tradycję, szczególnie jeśli rozważa się więcej niż jedno działanie i pozostają one między sobą w pewnej relacji, to funkcje w zapisie addytywnym zapisuje się zwykle z wykorzystaniem symboli zawierających:

  • plus: lub
  • zwężających się ku dołowi:
  • Działanie odwrotne do powyższego zapisuje się zazwyczaj za pomocą symboli zawierających poziomą kreskę

    Funkcja (łac. functio, -onis, „odbywanie, wykonywanie, czynność”) – dla danych dwóch zbiorów X i Y przyporządkowanie każdemu elementowi zbioru X dokładnie jednego elementu zbioru Y. Oznacza się ją na ogół f, g, h itd.Zbiór liczb rzeczywistych – uzupełnienie zbioru liczb wymiernych. Zbiór liczb rzeczywistych zawiera m.in. liczby naturalne, ujemne, całkowite, pierwiastki liczb dodatnich, wymierne, niewymierne, przestępne, itd. Z drugiej strony na liczby rzeczywiste można też patrzeć jak na szczególne przypadki liczb zespolonych.

    Symbole działań w zapisie multiplikatywnym obejmują m.in.:

  • kropkę lub okrągły znak:
  • iks:
  • gwiazdkę: lub
  • zwężające się ku górze
  • Popularne działania multiplikatywne (mnożenia) częstokroć nie posiadają oznaczenia. Działanie odwrotne do powyższego oznacza się najczęściej przez notacji wynikającej z definicji potęgowania.

    Monoid - półgrupa, której działanie ma element neutralny. Formalnie, monoid to algebra ( S , e , ∗ ) {displaystyle (S,e,*)} , sygnatury ( 0 , 2 ) {displaystyle (0,2)} , gdzie S jest niepustym zbiorem, natomiastOdwrotna notacja polska (ONP, ang. Reverse Polish Notation, RPN) – jest sposobem zapisu wyrażeń arytmetycznych, w którym znak wykonywanej operacji umieszczony jest po operandach (zapis postfiksowy), a nie pomiędzy nimi jak w konwencjonalnym zapisie algebraicznym (zapis infiksowy) lub przed operandami jak w zwykłej notacji polskiej (zapis prefiksowy). Zapis ten pozwala na całkowitą rezygnację z użycia nawiasów w wyrażeniach, jako że jednoznacznie określa kolejność wykonywanych działań.

    Przykłady[ | edytuj kod]

     Zapoznaj się również z: algebra ogólna.

    Działania wewnętrzne[ | edytuj kod]

    Działanie wewnętrzne to funkcja przypisująca każdej parze uporządkowanej elementów danego zbioru element tego zbioru,

    Działanie jednoargumentowe – w algebrze ogólnej działanie algebraiczne przyjmujące jeden argument, czyli funkcja danego zbioru w siebie, tzn. przyporządkowująca każdemu elementowi danego zbioru element tego samego zbioru. Niekiedy wyraz „działanie” zastępuje się słowem „operacja”, czy „operator”, z kolei synonimem słowa „jednoargumentowy” są wyrazy „jednoczłonowy” i „unarny”.Zapis infiksowy – inaczej zapis wrostkowy. Klasyczny sposób zapisywania wyrażeń z binarnymi (dwuargumentowymi) operacjami arytmetycznymi (dodawanie, mnożenie, potęgowanie, itd.).

    Strukturę nazywa się grupoidem. Jeśli jest ono dodatkowo łączne, strukturę tę nazywa się półgrupą. Jeśli działanie ma dodatkowo element neutralny, to struktura jest monoidem. Jeśli struktura jest grupą ze względu na przemienne działanie i półgrupą ze względu na przy czym działanie jest rozdzielne względem to strukturę tę nazywa się pierścieniem. Jeżeli działanie jest przemienne, to dowolną z powyższych struktur nazywa się przemienną.

    Notacja polska, zapis przedrostkowy, notacja Łukasiewicza – sposób zapisu wyrażeń logicznych (a później arytmetycznych), podający najpierw operator, a potem operandy (argumenty). Został przedstawiony w 1920 roku przez polskiego filozofa i logika Jana Łukasiewicza. Różniła się ona od zapisów nawiasowych używanych, m.in., przez klasyczne dzieło formalizmu logicznego Principia Mathematica Bertranda Russella i A. N. Whiteheada. Według Jana Woleńskiego, notacja ta pozwala na łatwiejsze przeprowadzanie operacji na formułach o znacznej długości; formuły krótsze wydają się bardziej "intuitywne".Potęgowanie – działanie dwuargumentowe będące uogólnieniem wielokrotnego mnożenia elementu przez siebie. Potęgowany element nazywa się podstawą, zaś liczba mnożeń, zapisywana zwykle w indeksie górnym po prawej stronie podstawy, nosi nazwę wykładnika. Wynik potęgowania to potęga elementu.

    Dodawanie, odejmowanie i mnożenie na liczbach rzeczywistych są działaniami dwuargumentowym w zbiorze liczb rzeczywistych. Dzielenie nie jest działaniem, gdyż nie jest określone dla par postaci Mnożenie i dodawanie liczb jest łączne i przemienne. Z kolei odejmowanie i dzielenie, nie są ani łączne, ani przemienne. Elementem neutralnym dodawania liczb rzeczywistych jest elementem neutralnym mnożenia jest Działania odejmowania i dzielenia liczb rzeczywistych nie mają elementów neutralnych.

    Działanie grupy – w algebrze i geometrii sposób opisania symetrii obiektów za pomocą pojęcia grupy. Istotne elementy obiektu opisane są za pomocą zbioru, a jego symetrie za pomocą jego grupy symetrii, która składa się z wzajemnie jednoznacznych przekształceń geometrycznych wspomnianego zbioru. Wówczas grupę tę nazywa się także grupą permutacji (szczególnie, jeśli zbiór jest skończony lub nie jest przestrzenią liniową) lub grupą przekształceń (szczególnie, gdy zbiór jest przestrzenią liniową, a grupa działa jak przekształcenia liniowe zbioru).Element neutralny – w algebrze element struktury algebraicznej, który dla danego działania dwuargumentowego przyłożony do dowolnego elementu nie zmieni go.

    W zbiorze liczb naturalnych można określić działanie potęgowania: które parze liczb przypisuje odpowiednią potęgę:

    Dodawanie wektorów w przestrzeni liniowej jest działaniem dwuargumentowym w zbiorze wektorów tej przestrzeni.

    Działanie składania funkcji jest działaniem dwuargumentowym w zbiorze W ogólności składanie funkcji jest łączne, ale nie jest przemienne.

    Działania zewnętrzne[ | edytuj kod]

    Działanie zewnętrzne to funkcja przypisująca każdemu elementowi iloczynu kartezjańskiego zbiorów oraz element pewnego zbioru

    Przykładami takich działań są

  • mnożenie przez skalar w przestrzeni liniowej nad ciałem
  • działanie grupy na zbiorze
  • Zobacz też[ | edytuj kod]

  • działanie zeroargumentowe
  • działanie jednoargumentowe




  • Reklama

    Czas generowania strony: 0.899 sek.