• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Oddychanie komórkowe



    Podstrony: 1 [2] [3] [4] [5] [6]
    Przeczytaj także...
    Metanogeny zwane też tradycyjnie bakteriami metanogennymi, bakteriami metanogenicznymi lub metanobakteriami, mimo że według obecnych klasyfikacji taksonomicznych nie są zaliczane do bakterii, są to archeowce u których głównym produktem oddychania jest metan. W tym typie oddychania beztlenowego energia użyteczna biologicznie jest pozyskiwana podczas przenoszenia elektronów z wodoru na dwutlenek węgla. Metanobakterie są bezwzględnymi anaerobami. Ich metabolizm zachodzi przy temperaturach od 0 do 70 °C, niektóre są w stanie funkcjonować nawet w temperaturze 90 °C, przy wyższych temperaturach giną. Wraz ze wzrostem temperatury wzrasta wydajność metabolizmu. Środowisko bakterii metanogennych musi być beztlenowe, pH neutralne lub lekko alkaliczne i musi zawierać przynajmniej 50% wody. Dlatego najczęściej spotyka się je w: bagnach, na uprawach ryżowych, oborniku, gnojowicy lub w układzie trawiennym przeżuwaczy. Inhibitorem bakterii metanogenicznych są: kwasy organiczne, tlen oraz środki dezynfekcyjne. Zamieszkują również: jelito grube kręgowców i układ trawienny termitów.Heksozy – grupa organicznych związków chemicznych. Są to monosacharydy (cukry proste) zawierające sześć atomów węgla w cząsteczce. Występują przede wszystkim w formach cyklicznych (piranozy lub furanozy), będących wewnątrzcząsteczkowymi hemiacetalami (półacetalami).
    Schemat oddychania komórkowego podczas utleniania glukozy

    Oddychanie komórkowe – jest wielostopniowym biochemicznym procesem utleniania związków organicznych związanym z wytwarzaniem energii użytecznej metabolicznie. Oddychanie przebiega w każdej żywej komórce w sposób stały. Zachodzi ono nawet wtedy, gdy inne procesy metaboliczne zostaną zahamowane. Chociaż istnieją różnice w przebiegu procesu oddychania u poszczególnych grup organizmów, to zestaw enzymów katalizujących poszczególne reakcje składające się na oddychanie jest zbliżony u wszystkich organizmów żywych. Zachodzenie oddychania jest jednym z najczęściej stosowanych wskaźników zachodzenia procesów życiowych. Jedynie wirusy będące strukturami na pograniczu życia i cząstek chemicznych nie przeprowadzają procesu oddychania.

    Metan (znany także jako gaz błotny i gaz kopalniany), CH4 – organiczny związek chemiczny, najprostszy węglowodór nasycony (alkan). W temperaturze pokojowej jest bezwonnym i bezbarwnym gazem. Jest stosowany jako gaz opałowy i surowiec do syntezy wielu innych związków organicznych.Kwasy tłuszczowe – kwasy monokarboksylowe o wzorze ogólnym R-COOH (R oznacza łańcuch węglowodorowy, a COOH jest grupą karboksylową znajdującą się na końcu tego łańcucha).

    Chociaż substratem w reakcji oddychania mogą być wszystkie związki organiczne obecne w komórkach, najczęściej ogólną reakcję oddychania komórkowego zapisuje się dla utleniania cukru – glukozy w obecności tlenu:

    C6H12O6 + 6O2 → 6CO2 + 6H2O

    Energia uwolniona w procesie utleniania związków organicznych pojawia się częściowo w postaci związku wysokoenergetycznego – ATP, który może być wykorzystany do przeprowadzania reakcji chemicznych zachodzących w komórce lub do poruszania organizmu np. w tkance mięśniowej. Proces produkcji ATP nie przebiega ze 100% sprawnością i część energii uwalniana jest w postaci ciepła.

    Fruktozo-6-fosforan – organiczny związek chemiczny, pochodna fruktozy, w której grupa hydroksylowa przy atomie węgla nr 6 została zestryfikowana kwasem fosforowym. Forma zawierająca resztę cukrową w konfiguracji β-D jest bardzo rozpowszechniona w komórkach.Dekarboksylacja (inaczej dekarboksylowanie) – reakcja chemiczna, w której dochodzi do usunięcia grupy karboksylowej z kwasów karboksylowych lub ich soli i estrów. W wyniku tej reakcji następuje zazwyczaj wydzielenie dwutlenku węgla. W organizmie jest wywoływana najczęściej poprzez działanie enzymów.

    Poza węglowodanami organizmy w procesie oddychania mogą utleniać tłuszcze oraz białka, a po bardziej złożonych modyfikacjach także pozostałe związki organiczne.

    Dla najczęściej używanego substratu, glukozy, reakcje oddychania komórkowego zachodzą na trzech szlakach metabolicznych:

  • Glikoliza, w której glukoza przekształcana jest do kwasu pirogronowego i powstają niewielkie ilości ATP oraz NADH.
  • Cykl Krebsa określany także cyklem kwasu cytrynowego lub cyklem kwasów trikarboksylowych, w którym kwas pirogronowy po przekształceniu do acetylo-CoA w cyklu przemian przekształcany jest do CO2 z wytworzeniem NADH, FADH2 oraz GTP lub ATP.
  • Oddychanie końcowe, czyli mitochondrialny łańcuch transportu elektronów i fosforylacja oksydacyjna. W tym etapie zredukowane nukleotydy NADH, FADH2 są utleniane. W efekcie szeregu reakcji powstaje woda, a uwalniana energia zamieniana jest na ATP.
  • Pierwszy z wymienionych etapów jest charakterystyczny dla utleniania węglowodanów i zachodzi w cytozolu. Dwa pozostałe etapy zachodzą u organizmów eukariotycznych w wyspecjalizowanych organellach – mitochondriach. W komórkach prokariontów enzymy biorące udział we wszystkich etapach oddychania znajdują się w cytozolu i błonie komórkowej.

    Procesy życiowe – czynności wspólne dla istot żywych. Dzięki nim można ustalić, że dany organizm jest istotą żywą.Otto Fritz Meyerhof (ur. 12 kwietnia 1884 w Hanowerze w Niemczech, zm. 6 października 1951 w Filadelfii w USA) – fizjolog i biochemik niemiecki, laureat Nagrody Nobla w 1922 roku.

    Tłuszcze oraz białka mogą być także włączane w cykl Krebsa. Wcześniej jednak tłuszcze rozkładane są do acetylo-CoA w procesie β-oksydacji, a białka muszą być rozłożone na aminokwasy, te zaś pozbawione reszty aminowej. Powstałe po odłączeniu reszty aminowej ketokwasy włączane są bezpośrednio lub po przekształceniu w reakcje glikolizy i cyklu kwasu cytrynowego.

    Lipazy - grupa enzymów należących do hydrolaz. Hydrolazy wykazują niewielką specyficzność i katalizują rozkład estrów, utworzonych przez kwasy o krótkim i długim łańcuchu, nasycone i nienasycone, oraz alkohole mające łańcuch krótki lub długi, jedno- lub wielowodorotlenowe. Najważniejszą z nich jest lipaza trzustkowa (EC 3.1.1.3).Cytochrom c jest to hemoproteina pełniąca funkcję transportera elektronów w łańcuchu oddechowym pomiędzy kompleksem cytochromów bc1 a oksydazą cytochromową w mitochondriach. Rodzina cytochromów c jest jedną z najlepiej scharakteryzowanych rodzin białek.

    U organizmów, które stale lub okresowo nie mają dostępu do tlenu, wytwarzanie energii użytecznej biologicznie może polegać na niepełnym utlenieniu związków organicznych. Proces taki nazywany jest fermentacją. W efekcie fermentacji związki organiczne ulegają zarówno utlenianiu, jak i redukcji.

    Drugim sposobem uzyskania energii w warunkach beztlenowych jest utlenianie związków organicznych z wykorzystaniem utlenionych związków nieorganicznych np. azotanów, siarczanów, związków żelaza lub manganu, a nawet dwutlenku węgla. Związki te służą jako akceptory elektronów w łańcuchu transportu elektronów zbliżonym do łańcucha oddechowego zachodzącego przy przenoszeniu elektronów na tlen. Pozostałe etapy oddychania nie różnią się od oddychania tlenowego.

    Ubichinon (koenzym Q) – organiczny związek chemiczny z grupy chinonów, występujący w mitochondriach komórek roślinnych i zwierzęcych. Jest odpowiedzialny za przenoszenie elektronów w łańcuchu oddechowym. Po przyłączeniu elektronów swobodnie porusza się w wewnętrznej błonie mitochondrialnej umożliwiając transport elektronów między kompleksami białek łańcucha oddechowego, które wbudowane są w wewnętrzną błonę mitochondrialną. Przenosi elektrony między dehydrogenazą NADH (kompleks I), względnie reduktazą bursztynian-koenzym-Q (kompleks II) na kompleks cytochromów bc1, jest więc zatem miejscem zejścia się dróg elektronów pochodzących z NADH oraz FADH2.1,3-Bisfosfoglicerynian – organiczny związek chemiczny biorący udział w glikolizie i cyklu Calvina. Pełni funkcję związku przenoszącego energię, co związane jest z występowaniem wiązań wysokoenergetycznych, czyli wiązań labilnych, łatwo ulegających rozerwaniu.

    Oba procesy zachodzące w warunkach beztlenowych mogą być określane jako oddychanie beztlenowe, jednak w mikrobiologii terminem oddychania beztlenowego określa się jedynie wykorzystywanie związków nieorganicznych w roli utleniacza. Fermentacje są traktowane jako oddzielna grupa procesów metabolicznych prowadzących do uzyskania energii użytecznej metabolicznie.

    Grupa acylowa (acyl) – grupa funkcyjna utworzona formalnie poprzez oderwanie przynajmniej jednej grupy hydroksylowej od cząsteczki kwasu tlenowego posiadającego wzór ogólny RmE(=O)n(OH)x (n ≠ 0) lub analog takiej grupy. Terminem tym określa się zazwyczaj grupę pochodzącą od kwasu karboksylowego posiadającą wzór ogólny −C(=O)R i występującą w pochodnych tych kwasów, m.in. chlorkach kwasowych.Glukozo-6-fosforan – organiczny związek chemiczny z grupy aldoz, pochodna glukozy ufosforylowana w pozycji 6. Występuje powszechnie w organizmach żywych.

    Spis treści

  • 1 Oddychanie komórkowe glukozą
  • 1.1 Glikoliza
  • 1.2 Oksydacyjny szlak pentozofosforanowy i jego powiązania z glikolizą
  • 1.3 Dekarboksylacja pirogronianu
  • 1.4 Dostarczanie substratów do cyklu Krebsa w mitochondriach roślin
  • 1.5 Cykl Krebsa
  • 1.6 Mitochondrialny łańcuch transportu elektronów i fosforylacja oksydacyjna
  • 1.7 Włączanie cytozolowego NADH do łańcucha oddechowego
  • 1.8 Łańcuch oddechowy w mitochondriach roślinnych
  • 2 Transport substancji przez błonę mitochondrialną
  • 3 Wydajność produkcji ATP
  • 4 Regulacja procesów oddychania komórkowego
  • 5 Utlenienie kwasów tłuszczowych
  • 5.1 β-oksydacja
  • 5.1.1 β-oksydacja kwasów tłuszczowych o nieparzystej liczbie atomów węgla
  • 5.1.2 β-oksydacja kwasów tłuszczowych nienasyconych
  • 5.2 β-oksydacja w peroksysomach
  • 5.3 Utlenianie kwasów tłuszczowych w komórkach roślinnych
  • 5.4 Podsumowanie
  • 6 Życie bez tlenu
  • 6.1 Fermentacje
  • 6.1.1 Fermentacje rozpoczynające się od glikolizy
  • 6.1.2 Fermentacje bez glikolizy
  • 6.1.3 Fermentacje innych związków
  • 6.2 Oddychanie komórkowe substancjami innymi niż tlen
  • 6.2.1 Oddychanie azotanowe
  • 6.2.2 Oddychanie siarczanowe
  • 6.2.3 Oddychanie węglanami i CO2
  • 6.2.4 Oddychanie żelazowe i manganowe
  • 7 Kalendarium badań nad oddychaniem
  • 8 Zobacz też
  • 9 Przypisy
  • 10 Bibliografia
  • 11 Linki zewnętrzne
  • Szlak pentozofosforanowy (szlak heksozomonofosforanowy, szlak fosfoglukonianowy) – ciąg reakcji biochemicznych, podczas których glukozo-6-fosforan jest utleniany do rybulozo-5-fosforanu oraz wytwarzany jest NADPH. Głównym celem jest dostarczanie komórce NADPH niezbędnego do przeprowadzania reakcji redukcji w cytoplazmie oraz synteza pentoz. Reakcje szlaku zachodzą w cytozolu. Przede wszystkim w tkance tłuszczowej, gruczołach mlecznych i korze nadnerczy oraz cytoplazmie i chloroplastach komórek roślinnych. Opisane poniżej reakcje nazywane są oksydacyjnym szlakiem pentozofosforanowym. Te same enzymy wykorzystywane są w szlaku określanym jako redukcyjny szlak pentozofosforanowy służącego do odtworzenia z aldehydu fosfoglicerynowego rybulozo-1,5-bisfosforanu w fazie regeneracyjnej cyklu Calvina zachodzącego w fotosyntetyzujących komórkach roślinnych. Wykorzystanie tych samych enzymów w cyklach reakcji o różnym efekcie końcowym pokazuje swoistą oszczędność ewolucji.Błona komórkowa, plazmolema, plazmolemma (cytolemma, plasmolemma) – półprzepuszczalna błona biologiczna oddzielająca wnętrze komórki od świata zewnętrznego. Jest ona złożona z dwóch warstw fosfolipidów oraz białek, z których niektóre są luźno związane z powierzchnią błony (białka peryferyjne), a inne przebijają błonę lub są w niej mocno osadzone białkowym lub niebiałkowym motywem (białka błonowe).

    Oddychanie komórkowe glukozą[]

    Glikoliza[]

     Osobny artykuł: Glikoliza.

    Pierwszy etap utleniania heksoz zachodzi w cytozolu i jest określany nazwą glikoliza lub szlak Embdena-Meyerhofa-Parnasa. Najczęściej na szlak glikolityczny wchodzi glukoza, która może powstawać z rozkładu cukrów zapasowych np. skrobi lub glikogenu. Jednak inne cukry sześciowęglowe mogą także łatwo wziąć udział w glikolizie. Dekstroza (jak i inne heksozy) są do niego włączane dzięki fosforylacji.

    Oksydoreduktaza Q – cytochrom c, inaczej cytochrom bc1, kompleks III, kompleks oksydoreduktazy ubichinon-cytochrom c – białko błonowe łańcucha oddechowego, zlokalizowane w wewnętrznej błonie mitochondrialnej, o masie 250 kDa i zbudowane z 10 podjednostek. Zawiera grupy prostetyczne takie, jak hem bH, hem bL, hem c1 oraz Fe-S.Hydroliza – reakcja podwójnej wymiany (często odwracalna), która przebiega między wodą i rozpuszczoną w niej substancją. W jej wyniku powstają nowe związki chemiczne. Jest szczególnym przypadkiem liolizy (solwolizy). Często przebiega w obecności katalizatorów (kwasów lub zasad). Hydrolizę wykorzystuje się w przemyśle chemicznym (np. hydroliza wielocukrów na cukry proste lub hydroliza chlorobenzenu do fenolu).
    Schemat glikolizy i szlaków wprowadzających inne heksozy. Kolor czerwony oznaczono ścieżki glikolizy. Kolorem zielonym ścieżki występujące tylko u roślin. Kolorem różowym włączanie innych heksoz niż glukoza. Oznaczenia enzymów: 1 – heksokinaza, 2 – izomeraza heksozofosforanowa, 3 – 1-fosfofruktokinaza (ATP-fosfofruktokinaza), 4 – aldolaza, 5 – izomeraza triozofosforanowa, 6 – dehydrogenaza aldehydu 3-fosfoglicerynowego, 7 – kinaza fosfoglicerynianu, 8 – mutaza fosfoglicerynianu, 9 – enolaza, 10 – kinaza pirogronianowa, 11 – 1-fosfotransferaza pirofosforan–fruktoza-6-fosforan, 12 – fosfofruktokinaza, 13 – inwertaza, 14 – mutaza glukozofosforanowa, 15 – fosforylaza skrobiowa, 16 – galaktokinaza, 17 – urydylotransferaza galaktozo-1-fosforanu, 18 – 4-epimeraza UDP-galaktozy.

    W pierwszym etapie glikolizy glukoza lub inna heksoza ulega fosforylacji. Reakcję tę przeprowadza enzym – heksokinaza [EC 2.7.1.1], zużywając cząsteczkę ATP. Powstała cząsteczka glukozo-6-fosforanu przekształcana jest do fruktozo-6-fosforanu przez izomerazę heksozofosforanową [EC 5.3.1.9]. Reakcja ta jest odwracalna. W podobny sposób do fruktozo-6-fosforanu mogą być przekształcane inne fosfoheksozy. Fruktoza, która jest produktem rozkładu często występującego u roślin cukru zapasowego, sacharozy, jest przekształcana bezpośrednio do fruktozo-6-fosforanu poprzez przyłączenie reszty fosforanowej z ATP przez fruktokinazę. Wytworzony fruktozo-6-fosforanu ulega fosforylacji w pozycji 1 katalizowanej przez 1-fosfofruktokinazę (ATP-fosfofruktokinazę) [EC 2.7.1.11], co prowadzi do powstania fruktozo-1,6-bisfosforanu. Podobnie jak przy fosforylacji glukozy zużywana jest cząsteczką ATP, a reakcja jest nieodwracalna. W komórkach roślinnych przekształcenie fruktozo-6-fosforanu do fruktozo-1,6-bisfosforanu może być także przeprowadzane przez 1-fosfotransferazę pirofosforan – fruktozo-6-fosforan (PP-fosfofruktodikinaza). W tym przypadku reszta fosforanowa pochodzi z pirofosforanu, a reakcja jest odwracalna. Aktywność PP-fosfofruktodikinazy jest większa w tkankach intensywnie rosnących. W komórkach o stosunkowo wolnym metabolizmie przeważa aktywność ATP-fosfofruktokinazy. Powstały fruktozo-1,6-bifosforan jest rozkładany na dwie cząsteczki: aldehyd 3-fosfoglicerynowy i fosfodihydroksyaceton. Reakcję katalizuje aldolaza fruktozobisfosforanowa [EC 4.1.2.13]. Powstanie dwóch trioz jest końcem pierwszego etapu glikolizy.

    Gradient elektrochemiczny, siła protonomotoryczna, gradient protonowy, ΔμH+ – różnica stężeń wolnych protonów (ΔpH) i ich ładunków (ΔΨ) w poprzek błony biologicznej. Gradient elektrochemiczny wykorzystywany jest przez syntazę ATP w chloroplastach, mitochondriach oraz błonach komórek prokariotycznych do produkcji ATP. Przenoszenie protonów przez błonę biologiczną może następować w łańcuchu transportu elektronów.Laureaci Nagrody Nobla w dziedzinie chemii – laureaci nagrody przyznawanej corocznie osobom (1–3 rocznie), które dokonały odkrycia naukowego lub wynalazku w dziedzinie chemii (jednej z pięciu różnych dziedzin), wyświadczając tym największe dobrodziejstwo ludzkości; kryterium oceny osiągnięć kandydatów do Nagrody Nobla sformułował Alfred Nobel (1833–1896) w swoim testamencie. Fundusz nagród pochodzi z odsetek od majątku fundatora, którym zarządza Fundacja Nobla. Decyzje w sprawach wyróżnień podejmuje Królewska Szwedzka Akademia Nauk, zgodnie ze ściśle opisaną procedurą. Ceremonie wręczania nagród odbywają się od roku 1901, 10 grudnia kolejnych lat, co jest uhonorowaniem rocznicy śmierci fundatora (10 grudnia 1896).

    W drugim etapie aldehyd 3-fosfoglicerynowy zostaje utleniony do 1,3-bisfosfoglicerynianu. Reakcję tę katalizuje dehydrogenaza aldehydu 3-fosfoglicerynowego [EC 1.2.1.12]. Energia wyzwolona podczas utleniania aldehydu 3-fosfoglicerynowego wystarcza do zredukowania cząsteczki NAD do NADH oraz ufosforylowania powstającego kwasu 1,3-bisfosfoglicerynowego przez przyłączenie fosforanu nieorganicznego. Fosfodihydroksyaceton także wchodzi w opisaną reakcję, po odwracalnym przekształceniu do aldehydu 3-fosfoglicerynowego przez izomerazę triozofosforanową [EC 5.3.1.1]. Kwas 1,3-bisfosfoglicerynowy traci jedną z grup fosforanowych, przekazując ją na ADP. Reakcję przeniesienia fosforanu na ADP przeprowadza kinaza fosfoglicerynianowa [EC 2.7.2.3], co prowadzi do powstania cząsteczki ATP (fosforylacja substratowa) oraz 3-fosfoglicerynianu. Związek ten może być łatwo przekształcony do 2-fosfoglicerynianu w odwracalnej reakcji katalizowanej przez mutazę fosfoglicerynianu [EC 5.4.2.1]. 2-fosfoglicerynian w kolejnej odwracalnej reakcji zostaje przekształcony w fosfoenolopirogronian (PEP) przez enolazę [EC 4.2.1.11], która odłącza cząsteczkę wody. Energia zawarta w fosfoenolopirogronianie zostaje wykorzystana do syntezy kolejnej cząsteczki ATP w ostatniej reakcji nieodwracalnej glikolizy katalizowanej przez enzym, kinazę pirogronianową [EC 2.7.1.40], której efektem działania jest powstanie ostatecznego produktu glikolizy: pirogronianu.

    Asparagina (skróty: Asn, N; skróty "Asx" lub "B" oznaczają "kwas asparaginowy lub asparagina", czyli Asx = [Asp lub Asn]) – organiczny związek chemiczny z grupy aminokwasów endogennych. Amid kwasu asparaginowego lub kwasu aminobursztynowego, powszechny składnik białek.Kwas szczawiowooctowy – organiczny związek chemiczny z grupy dikarboksylowych ketokwasów, jeden ze składników zapoczątkowujących cykl Krebsa – drugim jest Acetylo-CoA.

    W efekcie zachodzenia szlaku glikolitycznego jedna cząsteczka glukozy przekształcana jest do dwóch cząsteczek pirogronianu, zużywane są dwie cząsteczki ATP, a powstają 2 cząsteczki NADH oraz 4 cząsteczki ATP. Powstające w procesie glikolizy ATP jest efektem przenoszenia reszty fosforanowej z substratu na ADP przez odpowiednie enzymy i nosi nazwę fosforylacji substratowej.

    Oksydaza alternatywna (AOX z ang. alternative oxidase) – enzym obecny w wewnętrznej błonie mitochondriów roślin, glonów, grzybów i niektórych protistów. Geny kodujące AOX zostały zidentyfikowane również u przedstawicieli proteobakterii oraz zwierząt bezkręgowych należących do strunowców, półstrunowców, szkarłupni, nicieni, mięczaków, pierścienic, parzydełkowców czy gąbek. Enzym ten stwarza alternatywną możliwość przenoszenia elektronów z ubichinonu na tlen. Podczas klasycznego łańcucha oddechowego elektrony pobierane z NADH przekazywane są na ubichinon, a następnie poprzez kompleks cytochromowy bc1 i cytochrom c na oksydazę cytochromową. Oksydaza alternatywna przenosi elektrony na tlen z pominięciem kompleksu III i kompleksu IV łańcucha oddechowego. W efekcie jej działania NADH lub FADH2 zostają utlenione z wytworzeniem H2O jednak gradient elektrochemiczny nie powstaje a tym samym energia zgromadzona utlenianych NADH i FADH2 nie jest zamieniana na ATP lecz uwalniana w postaci ciepła. Szczególna cechą oksydazy alternatywnej jest jej niewrażliwość na inhibitory oksydazy cytochromowej np. cyjanek, siarkowodór, azydek, tlenek węgla oraz tlenek azotu. W tkankach zwierzęcych podanie 1 mmol l KCN powoduje całkowite zatrzymanie oddychania komórkowego, w tkankach roślinnych oddychanie komórkowe zmniejsza się do poziomu 10-20% oddychania przed podaniem inhibitora. Zachodzące z udziałem oksydazy alternatywnej oddychanie komórkowe określa się jako alternatywną drogę oddechową lub oddychanie niewrażliwe na cyjanek.Kwas fumarowy (fumaran, kwas trans-butenodiowy, HOOC–CH=CH–COOH) – organiczny związek chemiczny z grupy nienasyconych alifatycznych kwasów dikarboksylowych. Występuje w mchach i grzybach. Jest stosowany jako lek w łuszczycy.

    Oksydacyjny szlak pentozofosforanowy i jego powiązania z glikolizą[]

     Osobny artykuł: szlak pentozofosforanowy.
    Oksydacyjny szlak pentozofosforanowy i jego powiązania z glikolizą. 1 – heksokinaza, 2 – dehydrogenaza glukozo-6-fosforanu, 3 – laktonaza 6-fosfoglukonianu, 4 – dehydrogenaza 6-fosfoglukonianu, 5 – epimeraza rybulozo-5-fosforanu, 6 – izomeraza rybulozo-5-fosforanu, 7 – transketolaza, 8 – transaldolaza, 9 – transketolaza.

    Glukoza może zostać utleniona także inną drogą niż opisana wyżej glikoliza. W cytozolu komórki glukoza może zostać przekształcona w rybulozo-5-fosforan w oksydacyjnym szlaku pentozofosforanowym. Metabolity tego szlaku są wspólne z metabolitami glikolizy, dzięki czemu zwiększa się ilość glukozy utlenianej w ogólnym metabolizmie oddechowym.

    Utlenianie – reakcja chemiczna, w której atom przechodzi z niższego na wyższy stopień utlenienia (co jest równoważne z oddaniem elektronów).Fermentacja mlekowa – fermentacja węglowodanów do kwasu mlekowego odbywająca się pod wpływem działania bakterii fermentacji mlekowej. Fermentacja ta odgrywa kluczowe znaczenie przy produkcji wielu przetworów mlecznych.

    Podobnie jak w glikolizie, pierwsza reakcja polega na ufosforylowaniu glukozy w pozycji 6. Powstały glukozo-6-fosforan przekształcany jest do 6-fosfoglukonolaktonu przez dehydrogenazę glukozo-6-fosforanu [EC 1.1.1.49]. W reakcji tej redukcji ulega cząsteczka NADP i powstaje NADPH. 6-fosfoglukonolakton przekształcany jest do 6-fosfoglukonianu poprzez przyłączenie cząsteczki H2O przez laktonazę 6-fosfoglukonianu [EC 3.1.1.31]. Powstały 6-fosfoglukonian zostaje przekształcony do związku pięciowęglowego poprzez dekarboksylację przy jednoczesnej redukcji kolejnej cząsteczki NADP do NADPH. Reakcję przeprowadza dehydrogenaza 6-fosfoglukonianu [EC 1.1.1.43], a powstaje w niej rybulozo-5-fosforan. Opisany szereg reakcji określany jest jako faza oksydacyjna szlaku pentozofosforanowego.

    Archeony, archeany (Archaea) dawniej zwane też archebakteriami, archeobakteriami (Archaebacteria) lub archeowcami – drobne, pierwotnie bezjądrowe, zwykle ekstremofilne jednokomórkowce, tradycyjnie zaliczane wraz z eubakteriami do prokariotów.Cytoplazma – część protoplazmy komórki eukariotycznej pozostająca poza jądrem komórkowym a w przypadku, z definicji nie posiadających jądra, komórek prokariotycznych – cała protoplazma.

    W kolejnych reakcjach rybulozo-5-fosforan może zostać przekształcony do związków włączanych w glikolizę. Z rybulozo-5-fosforanu powstaje rybozo-5-fosforan, w reakcji katalizowanej przez izomerazę rybozo-5-fosforanu [EC 5.3.1.6], lub ksylulozo-5-fosforan w reakcji katalizowanej przez epimerazę rybulozo-5-fosforanu [EC 5.1.3.1]. Poprzez przenoszenie fragmentów łańcucha węglowego pomiędzy rybozo-5-fosforanem a ksylulozo-5-fosforanem powstaje sedoheptulozo-7-fosforan oraz aldehyd 3-fosfoglicerynowy. Reakcje przeprowadza transketolaza [EC 2.2.1.1], enzym przenoszący dwuwęglowy fragment z ketozy na aldozę. Aldehyd 3-fosfoglicerynowy oraz sedoheptulozo-7-fosforan biorą udział w kolejnej reakcji przeprowadzanej przez transaldolazę [EC 2.2.1.2], w wyniku której powstają fruktozo-6-fosforan i erytrozo-4-fosforan. Oba wytworzone związki mogą zostać przekształcone przez transketolazę do aldehydu 3-fosfoglicerynowego i ksylulozo-5-fosforanu.

    Kwas mlekowy (kwas 2-hydroksypropanowy, E270), C2H4OHCOOH – organiczny związek chemiczny z grupy hydroksykwasów, obecny w skwaśniałym mleku (skąd pochodzi jego nazwa) oraz powstający w mięśniach w trakcie intensywnego wysiłku fizycznego, kiedy dochodzi do procesu beztlenowej glikolizy, zwanej fermentacją mlekową.Inwertaza (β-fruktofuranozydaza, β-fruktozydaza, sacharaza, EC 3.2.1.26) – enzym z klasy hydrolaz i podklasy glikozydaz, który katalizuje hydrolizę wiązania fruktofuranozydowego (+)-sacharozy z wytworzeniem (+)-glukozy i (−)-fruktozy. Procesowi towarzyszy zmiana kierunku skręcania płaszczyzny polaryzacji światła spolaryzowanego z dodatniej na ujemną, tzw. "inwersja sacharozy", co jest źródłem nazwy enzymu.

    Dwa spośród metabolitów opisanych przekształceń są jednocześnie związkami biorącymi udział w glikolizie i mogą być w nią włączane. Są to aldehyd 3-fosfoglicerynowy oraz fruktozo-6-fosforan.

    Dekarboksylacja pirogronianu[]

    Powstały w glikolizie pirogronian w komórkach eukariotycznych jest transportowany do matriks mitochondrialnej przez przenośnik znajdujący się w błonie mitochondrialnej. W matriks mitochondrialnej pirogronian jest oksydacyjnie dekarboksylowany przez kompleks enzymatyczny dehydrogenazy pirogronianowej. W jego skład wchodzi wiele kopii pięciu różnych enzymów. Są to dehydrogenaza pirogronianowa (PDH) [EC 1.2.4.1], acetylotransferaza dihydrolipoamidowa [EC 2.3.1.12] i dehydrogenaza dihydrolipoamidowa [EC 1.8.1.4] przekształcające pirogronian do acetylo-CoA oraz kinaza dehydrogenazy pirogronianowej i fosfataza P-PDH, które poprzez odwracalną fosforylację dehydrogenazy pirogronianowej regulują aktywność całego kompleksu. Cała reakcja przebiega według równania:

    Skrobia – węglowodan, polisacharyd roślinny, składający się wyłącznie z merów glukozy połączonych wiązaniami α-glikozydowymi, pełniący w roślinach rolę magazynu energii.Fermentacja alkoholowa – proces rozkładu węglowodanów pod wpływem enzymów wytwarzanych przez drożdże z wytworzeniem alkoholu etylowego i dwutlenku węgla:

    pirogronian + CoA + NAD → Acetylo-CoA + NADH + CO2 + H

    Jednocześnie z dekarboksylacją, która prowadzi do powstania cząsteczki CO2, redukcji ulega jedna cząsteczka NAD, a dwuwęglowy fragment łańcucha pirogronianu przenoszony jest na koenzym A.

    Dostarczanie substratów do cyklu Krebsa w mitochondriach roślin[]

    Transport pirogronianu przez przenośnik pirogronianowy jest głównym sposobem jego dostarczenia do mitochondriów. W komórkach roślinnych istnieje także drugi sposób dostarczenia do matriks mitochondrialnej kluczowego dla dalszych etapów oddychania zawiązku. Pirogronian może być wytwarzany w matriks przez dehydrogenazę jabłczanową dekarboksylującą, nazywaną także enzymem jabłczanowym. Enzym ten przeprowadza reakcję dekarboksylacji jabłczanu, co wiąże się ze zredukowaniem cząsteczki NAD. Jabłczan do mitochondriów dostarczany jest przez przenośnik kwasów dikarboksylowych z cytozolu, gdzie powstaje z fosfoenolopirogronianu będącego metabolitem glikolizy. Fosfoenolopirogronian przekształcany jest karboksylazę fosfoenolopirogronianu do szczawiooctanu poprzez przyłączenie cząsteczki CO2. Powstały szczawiooctan redukowany jest do jabłczanu przez dehydrogenazę jabłczanową i zużywającą do redukcji NADH obecny w cytozolu. Przenoszenie jabłczanu przez wewnętrzną błonę mitochondrialną dostarcza pirogronianu dla kompleksu dekarboksylazy pirogronianu lub też jabłczan jest bezpośrednio włączany w cykl Krebsa. Istotne jest przeniesienie w postaci jabłczanu także siły redukcyjnej (NADH) odtwarzanej przez enzym jabłczanowy w matriks. Enzym jabłczanowy może również dekarboksylować jabłczan wytwarzany w cyklu Krebsa tworząc alternatywny cykl metaboliczny.

    Glikogen – polisacharyd (wielocukier), którego cząsteczki zbudowane są z połączonych ok. 100 000 reszt D-glukozy. W organizmach zwierzęcych jest gromadzony w wątrobie, w mniejszym stężeniu występuje też w tkance mięśni poprzecznie prążkowanych (szkieletowych).Eduard Buchner (ur. 20 maja 1860 w Monachium, Niemcy, zm. 13 sierpnia 1917 w Fokszanach, Rumunia) − niemiecki profesor chemii na uniwersytecie w Kolonii (1893-1896), Tybindze (1896-1898), Berlinie (1898-1909), Wrocławiu (1906-1911) i Würzburgu (od roku 1911). Prace badawcze z dziedziny związków cyklicznych (odkrycie pirazolu), nad alkoholową fermentacją drożdżową i procesami fermentacyjnymi bez udziału komórek żywych. Laureat Nagrody Nobla w dziedzinie chemii w roku 1907.

    Cykl Krebsa[]

     Osobny artykuł: Cykl kwasu cytrynowego.

    Powstały na skutek dekarboksylacji pirogronianu acetylo-CoA jest substratem dla kolejnego etapu oddychania: cyklu Krebsa – szeregu reakcji biochemicznych zachodzących w macierzy mitochondrialnej. W reakcjach tych ze związków organicznych wytwarzany jest CO2 oraz związki wysokoenergetyczne w postaci NADH, FADH2 oraz GTP lub ATP.

    Glukoza (dokładniej: D-glukoza) – organiczny związek chemiczny, monosacharyd (cukier prosty) z grupy aldoheksoz. Jest białym, drobnokrystalicznym ciałem stałym, z roztworów wodnych łatwo krystalizuje jako monohydrat. Jest bardzo dobrze rozpuszczalna w wodzie (nie zmienia pH roztworu). Ma słodki smak, nieco mniej intensywny od sacharozy.Reakcja chemiczna – każdy proces, w wyniku którego pierwotna substancja zwana substratem przemienia się w inną substancję zwaną produktem. Aby cząsteczka substratu zamieniła się w cząsteczkę produktu konieczne jest rozerwanie przynajmniej jednego z obecnych w niej wiązań chemicznych pomiędzy atomami, bądź też utworzenie się przynajmniej jednego nowego wiązania. Reakcje chemiczne przebiegają z reguły z wydzieleniem lub pochłonięciem energii cieplnej, promienistej (alfa lub beta) lub elektrycznej.

    W pierwszej reakcji reszta acylowa z acetylo-CoA przyłączana jest do cząsteczki szczawiooctanu przez enzym syntazę cytrynianową [EC 2.3.3.1]. W wyniku tej reakcji powstaje cząsteczka cytrynianu oraz odtwarzany jest koenzym A. Cytrynian przekształcany jest do izocytrynianu przez akonitazę [EC 4.2.1.3]. Reakcja ta jest odwracalna, a jej produktem pośrednim jest cis-akonitan – związany z cząsteczka enzymu. Izocytrynian zawierający sześć atomów węgla ulega kolejno utlenieniu i dekarboksylacji przeprowadzanej przez dehydrogenazę izocytrynianową [EC 1.1.1.42]. W wyniku tej reakcji powstaje cząsteczka α-ketoglutaranu, określanego także 2-oksoglutaranem, cząsteczka CO2 oraz NAD jest redukowany do NADH. Pięciowęglowy α-ketoglutaran (2-oksoglutaran) ulega kolejnej dekarboksylacji przeprowadzanej przez kompleks enzymatyczny dehydrogenazy α-ketoglutaranowej [EC 1.2.4.2]. W tej reakcji również powstaje CO2 i ulega redukcji kolejna cząsteczka NAD, a czterowęglowy produkt zostaje przeniesiony na koenzym A, tworząc bursztynylo-CoA. Powstały bursztynylo-CoA rozkładany jest na bursztynian i cząsteczkę koenzymu A, w wyniku reakcji hydrolizy. Reakcję tę katalizuje syntetaza bursztynylo-CoA, a energia wyzwalana podczas reakcji pozwala ufosforylować cząsteczkę GDP do GTP w mitochondriach części zwierząt [EC 6.2.1.4] lub ADP do ATP w mitochondriach pozostałych organizmów [EC 6.2.1.5]. Podobnie jak w glikolizie, GTP lub ATP powstaje na drodze fosforylacji substratowej. W kolejnej (odwracalnej) reakcji bursztynian ulega dehydrogenacji przeprowadzanej przez dehydrogenazę bursztynianową [EC 1.3.5.1] – jedyny enzym cyklu, który nie jest białkiem rozpuszczalnym, lecz osadzonym w wewnętrznej błonie mitochondrialnej, zawierającym grupę prostetyczną w postaci FAD. Podczas przekształcania bursztynianu do fumaranu dinukleotyd flawinoadeninowy ulega redukcji, przechodząc w FADH2. Fumaran ulega przekształceniu do jabłczanu poprzez przyłączenie cząsteczki H2O katalizowane przez fumarazę [EC 4.2.1.2]. Z jabłczanu odtwarzany jest pierwszy związek cyklu – szczawiooctan. Reakcję katalizuje dehydrogenaza jabłczanowa [EC 1.1.1.37]. Powstaje w niej ostatnia, trzecia, cząsteczka NADH wytwarzana w jednym obrocie cyklu. Dwie ostatnie reakcje są odwracalne, a powstały szczawiooctan może przyłączyć kolejną resztę acylową.

    Mikroorganizm (gr. μικρός, mikrós – mały, ὀργανισμός, organismós – organizm), drobnoustrój, mikrob – organizm obserwowany dopiero pod mikroskopem. Pojęcie to nie jest zbyt precyzyjne, lecz z pewnością mikroorganizmami są bakterie, archeony, pierwotniaki i niektóre grzyby. Najprecyzyjniej grupa ta definiowana jest jako ogół organizmów jednokomórkowych, dlatego nie można terminu tego stosować do bardzo małych przedstawicieli różnych grup zwierząt, takich jak np. nicienie, wrotki, roztocza, niesporczaki, owady itd.Glukoneogeneza (ang. Gluconeogenesis) – enzymatyczny proces przekształcania niecukrowcowych prekursorów, np. aminokwasów, glicerolu czy mleczanu w glukozę. Resynteza glukozy następuje głównie w hepatocytach i w mniejszym stopniu w komórkach nerek, a głównym punktem wejścia substratów do tego szlaku jest pirogronian. Szybkość zachodzenia procesu jest zwiększana podczas wysiłku fizycznego i głodu. W wyniku glukoneogenezy wydzielają się duże ilości energii.
    Przebieg cyklu kwasu cytrynowego. W przypadku roślin ufosforylowana zostaje cząsteczka ADP. W mitochondriach zwierzęcych ufosforylowana zostaje cząsteczka GDP.

    W wyniku jednego obrotu cyklu reszta acylowa zostaje przekształcona do dwóch cząsteczek CO2, a jednocześnie energia wiązań chemicznych przeniesiona zostaje na trzy cząsteczki NADH, jedną cząsteczkę FADH2 oraz cząsteczkę GTP lub ATP. W celu włączenia dwóch reszt acylowych powstałych z cząsteczki glukozy w procesie glikolizy cykl Krebsa musi zajść dwukrotnie.

    Fritz Albert Lipmann (ur. 12 czerwca 1899 w Królewcu, zm. 24 lipca 1986 w Poughkeepsie) – amerykański biochemik pochodzenia niemieckiego, laureat Nagrody Nobla z dziedziny fizjologii lub medycyny w 1953. Nagrodę uzyskał za odkrycie koenzymu A.Wodór (H, łac. hydrogenium) – pierwiastek chemiczny o liczbie atomowej 1, niemetal z bloku s układu okresowego. Jego izotop, prot, jest najprostszym możliwym atomem, zbudowanym z jednego protonu i jednego elektronu.

    Mitochondrialny łańcuch transportu elektronów i fosforylacja oksydacyjna[]

    Powstałe w cyklu Krebsa zredukowane nukleotydy NADH i FADH2 mogą zostać utlenione na kompleksach enzymatycznych wchodzących w skład łańcucha oddechowego, a energia zostaje zgromadzona w postaci gradientu elektrochemicznego. W procesie określanym fosforylacją oksydacyjną energia gradientu elektrochemicznego służy do syntezy ATP. Reakcje łańcucha oddechowego zachodzą na kilku kompleksach białkowych będących elementami wewnętrznej błony mitochondriów. W efekcie utleniania NADH i FADH2 protony z matriks mitochondrialnej przenoszone są do przestrzeni międzybłonowej. Energia zgromadzona w postaci gradientu stężeń protonów i różnicy potencjału, określana nazwą potencjału elektrochemicznego, wykorzystana jest do wytwarzania ATP.

    John Ernest Walker (ur. 7 stycznia 1941 roku w Halifax w angielskiej prowincji Yorkshire) – brytyjski biolog molekularny.Oksydaza cytochromu c (też oksydaza cytochromowa, kompleks IV łańcucha oddechowego) – to duży transbłonowy kompleks białkowy błony wewnętrznej mitochondrium oraz bakterii. Jest to ostatnie białko łańcucha oddechowego (IV). Odbiera elektrony (utlenia) z cytochromów c i przenosi je na cząsteczkę tlenu, redukując go, wskutek czego po przyłączeniu jonów H powstają dwie cząsteczki wody. Podczas tego procesu, przenosi także przez błonę cztery jony H, wspomagając powstawanie potencjału chemiosmotycznego.
    Schemat przenoszenia elektronów w mitochondriach. Kolorem zielonym oznaczono kompleksy obecne jedynie w mitochondriach roślinnych. AOX – oksydaza alternatywna, ID – wewnętrzna dehydrogenaza NADH, OD – zewnętrzna dehydrogenaza NAD(P)H, GPDH – mitochondrialna dehydrogenaza glicerolo-3-fosforanu, K I – kompleks I, K II – kompleks II, K III – kompleks III, K IV – oksydaza cytochromowa, K V – syntaza ATP, Q – ubichinon, cyt. c – cytochrom c.

    Kompleks I nazywany dehydrogenazą NADH [EC 1.6.5.3] pobiera elektrony z NADH znajdującego się w macierzy mitochondrialnej i przekazuje je na ubichinonchinon, który ze względu na swój hydrofobowy charakter może swobodnie przemieszczać się w błonie mitochondrialnej. Ubichinon po przyjęciu dwóch elektronów pobiera z matriks mitochondrialnej dwa protony i przechodzi w swoją zredukowaną formę – ubichinol. W skład kompleksu I wchodzi kilka przenośników elektronów, w tym mononukteotyd flawinowy (FMN) oraz kilka białek z centrami żelazo-siarkowymi. NADH może być utleniane przez kompleks I jedynie w matriks mitochondrialnym, gdyż tylko po tej stronie białko kompleksu posiada miejsce wiązania NADH. Podczas utleniania NADH protony z matriks mitochondrialnej przenoszone są do przestrzeni międzybłonowej. Przejściu dwóch elektronów z NADH na ubichonon towarzyszy przeniesienie czterech protonów z matriks do przestrzeni międzybłonowej.

    Indol (2,3-benzopirol) – heterocykliczny związek chemiczny, zbudowany ze sprzężonych pierścieni benzenowego i pirolowego. Zarówno wyjściowy indol, jak i bardziej złożone związki zawierające grupę indolową są powszechnie spotykane w tkankach żywych organizmów, zarówno zwierząt, jak i roślin. Grupa indolowa występuje też jako szkielet wielu substancji znajdujących się w ludzkim ciele, jak np. aminokwas tryptofan lub serotonina. Nazwa "indol" pochodzi od nazwy barwnika indygo, zawierającego dwie grupy indolowe. Jest to związek o bardzo nieprzyjemnym zapachu. Występuje w kale oraz w małych stężeniach w perfumach. Wytwarzany jest przez różne drobnoustroje np. z rodziny Enterobacteriaceae. Zdolność wytwarzania indolu jest jedną z metod identyfikacji drobnoustrojów z tej rodziny.Kwas propionowy (kwas propanowy według obecnej nomenklatury IUPAC) – organiczny związek chemiczny z grupy kwasów karboksylowych o wzorze C2H5COOH.

    Kompleks II to jeden z enzymów cyklu Krebsa – dehydrogenaza bursztynianowa [EC 1.3.5.1] zawierająca kilka centrów żelazo-siarkowych oraz dinukleotyd flawinoadeninowy redukowany podczas przekształcania bursztynianu w fumaran. Elektrony ze zredukowanego FADH2 podobnie jak w przypadku kompleksu I przekazywane są za pośrednictwem centrów Fe-S na ubichinon, który ulega redukcji do ubichinolu. Kompleks II nie jest białkiem transbłonowym i nie posiada zdolności do przenoszenia protonów przez wewnętrzną błonę.

    Karnityna (β-hydroksy-γ-trimetyloamoniomaślan), (CH3)3N–CH2–CH(OH)–CH2–COO – organiczny związek chemiczny o budowie betainowej, N,N,N-trimetylowa pochodna kwasu γ-amino-β-hydroksymasłowego (GABAOB). W organizmach jest syntetyzowany w wątrobie, nerkach i mózgu z aminokwasów (lizyny i metioniny) i pełni rolę w transporcie kwasów tłuszczowych z cytozolu do mitochondriów. Dość obficie występuje w mięśniach.Ściana komórkowa - martwy składnik komórki, otoczka komórki o funkcji ochronnej i szkieletowej. Ściana komórkowa występuje u roślin, grzybów, bakterii i niektórych protistów. U każdej z tych grup jest zbudowana z innych substancji, np. u grzybów jest to chityna, a u roślin celuloza i jej pochodne (hemiceluloza i pektyna) oraz lignina, natomiast u bakterii podstawowym składnikiem jest mureina. Ściana komórkowa leży na zewnątrz błony komórkowej. W tkankach ściany komórkowe sąsiadujących ze sobą komórek są zlepione pektynową substancją tworzącą blaszkę środkową. Między komórkami istnieją wąskie połączenia w postaci plasmodesm - wąskich pasm cytoplazmy przenikających ściany i zawierających fragmenty retikulum endoplazmatycznego. Młode komórki roślin otoczone są ścianą pierwotną, której strukturę wewnętrzną stanowią ułożone w sposób nieuporządkowany łańcuchy celulozowe wypełnione hemicelulozą i pektyną. W starszych komórkach obserwuje się również ścianę wtórną - powstającą po wewnętrznej stronie ściany pierwotnej, zwykle grubszą i bardziej wytrzymałą niż pierwotna, o uporządkowanej budowie szkieletu celulozowego, również wypełnionego hemicelulozą i pektyną. Ulega ona inkrustacji (węglan wapnia, krzemionka lub lignina) i adkrustacji (kutyna, suberyna, woski).

    Zredukowany na kompleksie I lub II ubichinon (ubichinol) przemieszcza się w błonie mitochondrialnej do kompleksu III łańcucha oddechowego nazywanego kompleksem bc1 lub oksydoreduktazą ubichinon-cytochrom c [EC 1.10.2.2]. Kompleks ten zawiera dwa cytochromy b, białko Rieskiego oraz cytochrom c1. Na kompleksie III zachodzi cykl Q, w wyniku którego dodatkowe protony przemieszczane są z matriks do przestrzeni międzybłonowej. Elektrony ze zredukowanego ubichinonu przenoszone są na cytochrom c – niewielkie hydrofilowe białko znajdujące się po stronie przestrzeni międzybłonowej, które po zredukowaniu na kompleksie III przenosi elektrony na kompleks IV.

    Kwas α-ketoglutarowy – organiczny związek chemiczny z grupy dikarboksylowych ketokwasów, ketonowa pochodna kwasu glutarowego.Żelazo (Fe, łac. ferrum) – metal z VIII grupy pobocznej o dużym znaczeniu gospodarczym, znane od czasów starożytnych.

    Kompleks IV to oksydaza cytochromowa [EC 1.9.3.1], która obiera elektrony od cytochromu c i przekazuje je na cząsteczkę O2. Po przeniesieniu 4 elektronów z macierzy mitochondrialnej pobierane są 4 protony i powstają dwie cząsteczki H2O. Oksydaza cytochromowa składa się z 13 podjednostek, zawiera także dwa hemy A i trzy jony miedzi ulokowane w centrach miedziowych. Cząsteczka O2 przyłączana jest do zredukowanego żelaza hemu. Dostarczenie trzech elektronów przez cytochrom c powoduje rozerwanie cząsteczki tlenu na grupę ferrytową przy hemie Fe=O i grupę —OH związaną z jonem Cu. Czwarty elektron redukuje grupę ferrytową do Fe—OH. Obie grupy OH po przyłączeniu protonów przekształcają się w dwie cząsteczki wody. Wszystkie cztery protony pobierane są z matriks, zwiększając gradient protonowy. Cztery protony są przez kompleks IV przenoszone do przestrzeni międzybłonowej, w efekcie z matriks mitochondrialnej ubywa osiem protonów.

    Energia gr. ενεργεια (energeia) – skalarna wielkość fizyczna charakteryzująca stan układu fizycznego (materii) jako jego zdolność do wykonania pracy.Ropa naftowa (olej skalny, czarne złoto) – ciekła kopalina, złożona z mieszaniny naturalnych węglowodorów gazowych, ciekłych i stałych (bituminów), z niewielkimi domieszkami azotu, tlenu, siarki i zanieczyszczeń. Ma podstawowe znaczenie dla gospodarki światowej jako surowiec przemysłu chemicznego, a przede wszystkim jako jeden z najważniejszych surowców energetycznych.

    W wyniku przenoszenia elektronów pomiędzy kompleksami I-IV jony H przenoszone są z matriks mitochondrialnej do przestrzeni międzybłonowej. Zgromadzoną w tej postaci energię wykorzystuje kompleks V (tzw. czynnik sprzęgający), czyli syntaza ATP [EC 3.6.3.14] składająca się z dwóch elementów: podjednostki F0 stanowiącej kanał jonowy oraz podjednostki F1 znajdującej się po stronie matriks przyłączającej do cząsteczki ADP fosforan nieorganiczny, wykorzystując energię potencjału elektrochemicznego. Wytworzenie jednej cząsteczki ATP wymaga przejścia do matriks 3,33 protonów.

    Ludwik Pasteur (fr. Louis Pasteur, ur. 27 grudnia 1822 w Dole, zm. 28 września 1895 w Saint-Cloud) – francuski chemik i prekursor mikrobiologii.Oddychanie (łac. respiratio – oddychanie) – procesy życiowe związane z uzyskiwaniem przez organizmy energii użytecznej biologicznie:

    Włączanie cytozolowego NADH do łańcucha oddechowego[]

    Na opisanych powyżej kompleksach łańcucha transportu elektronów utlenione może być NADH wytworzone w matriks mitochondrialnym. Wewnętrzna błona mitochondrialna nie przepuszcza jednak dla większości substancji chemicznych. Nie jest więc możliwe proste przeniesienie NADH powstałego w procesie glikolizy do wnętrza mitochondriów i jego utlenienie. Zwierzęta rozwiązały ten problem na dwa sposoby.

    Sprawność – skalarna bezwymiarowa wielkość fizyczna określająca w jakim stopniu urządzenie, organizm lub proces przekształca energię występującą w jednej postaci w energię w innej postaci, stosunek wartości wielkości wydawanej przez układ do wartości tej samej wielkości dostarczanej do tego samego układu.PMID (ang. PubMed Identifier, PubMed Unique Identifier) – unikatowy identyfikator przypisany do każdego artykułu naukowego bazy PubMed.

    Pierwszy z nich polega na użyciu NADH do redukcji fosfodihydroksyacetonu, jednego z metabolitów glikolizy. Fosfodihydroksyaceton redukowany jest przez cytozolową dehydrogenazę glicerolo-3-fosforanu do glicerolo-3-fosforanu. Związek ten w przestrzeni międzybłonowej utleniany jest przez białko leżące na zewnątrz wewnętrznej błony mitochondrialnej o podobnej budowie jak kompleks II łańcucha oddechowego – mitochondrialną dehydrogenazę glicerolo-3-fosforanu odtwarzającą fosfodihydroksyaceton przy jednoczesnej redukcji grupy prostetycznej mitochondrialnej dehydrogenazy. Powstały FADH2 oddaje elektrony na chinon z puli błonowej. Dalsze losy elektronów są takie jak w klasycznym łańcuchu oddechowym. Redukcja NADH przez mitochondrialną dehydrogenazę glicerolo-3-fosforanu omija kompleks I, stąd ilość protonów przenoszonych przez błonę przy tej drodze utleniania NADH cytozolowego jest mniejsza, a tym samym sposobem powstaje mniej cząsteczek ATP.

    Adenozyno-5′-trifosforan (adenozynotrójfosforan, ATP) – organiczny związek chemiczny, nukleotyd adeninowy zbudowany z grupy trójfosforanowej przyłączonej w pozycji 5′ cząsteczki adenozyny, tworząc bezwodnik kwasu fosforowego. Odgrywa on ważną rolę w biologii komórki jako wielofunkcyjny koenzym i molekularna jednostka w wewnątrzkomórkowym transporcie energii. Stanowi nośnik energii chemicznej, używanej w metabolizmie komórki. Powstaje jako magazyn energii w procesach fotosyntezy i oddychania komórkowego. Zużywają go liczne enzymy, a zgromadzona w nim energia służy do przeprowadzania różnorodnych procesów, jak biosyntezy, ruchu i podziału komórki. Tworzy się z adenozyno-5′-difosforanu, a przekazując swą energię dalej, powraca do formy ADP lub adenozyno-5′-monofosforanu (AMP). Cykl ten zachodzi bezustannie w organizmach żywych. Człowiek każdego dnia przekształca ilość ATP porównywalną z masą swego ciała.Koenzym A (w skrócie CoA, czasem CoA∼SH w celu uwidocznienia niepodstawionej grupy tiolowej) - organiczny związek chemiczny powstający w organizmie z adenozynotrifosforanu, pantotenianu oraz cysteaminy, służący jako przenośnik grup acylowych. Cząsteczkę koenzymu A związaną z resztą acylową nazywa się acylokoenzymem A (acylo-CoA). Najważniejszym z takich połączeń jest acetylokoenzym A (acetylo-CoA).

    Drugim sposobem włączenia cytozolowego NADH jest zużycie go do redukcji szczawiooctanu. Powstały w reakcji jabłczan przenoszony jest do wnętrza mitochondrium przez przenośnik zlokalizowany w wewnętrznej błonie mitochondrialnej. W matriks odtwarzany jest szczawiooctan i NADH w reakcji katalizowanej przez dehydrogenazę jabłczanową – jeden z enzymów cyklu Krebsa. Powstały w matriks szczawiooctan powraca do cytozolu w postaci asparaginianu wytwarzanego w reakcji transaminacji z glutaminianem jako dawcą grupy aminowej. Po przejściu do cytozolu asparaginian przekształcany jest w szczawiooctan w reakcji dezaminacji. Dzięki dwóm przenośnikom wewnętrznej błony mitochondrialnej, przenoszącym jabłczan i asparaginian, możliwe jest utlenienie cytozolowego NADH w opisanym powyżej łańcuchu oddechowym bez strat energii. Straty te występują w pierwszym z opisanych sposobów włączania NADH do łańcucha oddechowego. Odpowiednie przenośniki są obecne w wewnętrznej błonie mitochondrialnej komórek serca i wątroby człowieka.

    Dehydrogenazy to ogólna nazwa enzymów odczepiających atomy wodoru (łac. hydrogenium - wodór) z rozmaitych związków organicznych występujących w organizmach żywych. Przykładem może być kompleks dehydrogenazy kwasów tłuszczowych czy enzymy cyklu Krebsa. Odrywany atom wodoru nie występuje w postaci rodnika tylko jest wiązany z NADP i tak używany do hydrogenacji (uwodorniania) albo utleniany w kaskadzie oksydacyjnej mitochondrium produkując ATP~P~P. Dopuszczalne jest przeniesienie w dwoch etapach jednoelektronowych z utworzeniem rodników. Mechanizm i stereochemie reakcji katalizowanych przez enzymy zależnie od nukleotydów nikotynoamidowych jest przedstawiona na przykładzie konkretnych reakcji:Dwutlenek węgla (nazwa systematyczna: ditlenek węgla; nazwa Stocka: tlenek węgla(IV)), CO2 – nieorganiczny związek chemiczny z grupy tlenków, w którym węgiel występuje na IV stopniu utlenienia.

    Łańcuch oddechowy w mitochondriach roślinnych[]

    W mitochondriach roślin łańcuch oddechowy może zachodzić w taki sam sposób jak opisany powyżej lub mogą zostać wykorzystane kompleksy białkowe nieobecne w mitochondriach zwierzęcych. Charakterystyczne dla mitochondriów roślinnych są dwie dehydrohenazy NADH, z których pierwsza znajduje się po zewnętrznej stronie wewnętrznej błony mitochondrialnej i może odbierać elektrony od NADH i NADPH obecnych w cytozolu i stosunkowo łatwo przechodzących przez zewnętrzną błonę mitochondrialną. Druga Dehydrogenaza specyficzna dla mitochondriów roślinnych występuje po wewnętrznej stronie wewnętrznej błony mitochondrialnej i może odbierać elektrony z NADH obecnego w matriks mitochondrialnym. Obie z wymienionych dehydrogenaz przekazują elektrony na ubichinon. Wspólna cechą jest także brak transportu protonów przez wewnętrzną błonę mitochondrialną, a więc nie biorą one udziału w wytwarzaniu gradientu elektrochemicznego, jak ma to miejsce w przypadku kompleksy I. Utlenienie NADH na dodatkowych dehydrogenaz prowadzi więc do wytwarzania mniejszych ilości ATP.

    Enzymy – wielkocząsteczkowe, w większości białkowe, katalizatory przyspieszające specyficzne reakcje chemiczne poprzez obniżenie ich energii aktywacji.Fosforylacja – reakcja przyłączenia reszty fosforanowej do nukleofilowego atomu dowolnego związku chemicznego. Zazwyczaj fosforylowane są grupy hydroksylowe (estryfikacja alkoholi) lub aminowe (tworzenie amidów). Przeciwieństwem fosforylacji jest defosforylacja.

    Wyjątkowym kompleksem występującym w mitochondriach roślin jest także oksydaza alternatywna. W mitochondriach zwierzęcych podanie cyjanku powoduje spadek intensywności oddychania do ułamka procenta wartości w warunkach normalnych. U roślin podanie cyjanku skutkuje jedynie obniżeniem oddychania do wartości 10-25% oddychania w normalnych warunkach. Cyjanek (KCN) jest inhibitorem oksydazy cytochromowej – kompleksy IV łańcuch oddechowego. Oksydaza alternatywna obecna w mitochondriach roślin umożliwia przeniesienie elektronów na tlen bezpośrednio ze zredukowanego ubichinonu z pominięciem kompleksu III i kompleksu IV. NADH zostaje utlenione, wytwarzana jest woda, jednak protony przenoszone są do przestrzeni mitochondrialnej jedynie przez kompleks I, lub w przypadku utleniania NADH na dehydrogenazie wewnętrznej nie są przenoszone przez błonę. Transport elektronów przez oksydazę alternatywną nie prowadzi więc do wytworzenia gradientu elektrochemicznego i syntezy ATP. Biologiczny sens działania alternatywnej drogi oddechowej nie jest dokładnie wyjaśniony. Wiadomo, że rośliny rezygnując z wytwarzania ATP, mogą uwalniać energię NADH w postaci ciepła i w ten sposób ogrzewać swój organizm lub kwiat zwiększając parowanie substancji przywabiających owady. Roślina Symplocarpus foetidus – kapusta skunksa – z rodziny obrazkowatych jest w stanie podgrzać swój kwiat o 14 °C w stosunku do otoczenia. Alternatywny szlak oddechowy może odgrywać rolę "wentyla bezpieczeństwa" – umożliwiać zachodzenie łańcucha oddechowego a co za tym idzie cyklu Krebsa w warunkach braku zapotrzebowania na ATP. Cykl Krebsa jest ważnym szlakiem metabolicznym nie tylko ze względu na utlenianie związków organicznych, lecz także na syntezę szkieletów węglowy niezbędnych do syntezy aminokwasów.

    Kanał jonowy – rodzaj cylindrycznego białka błonowego, posiadającego zdolność do kontrolowanego przepuszczania jonów zgodnie z ich gradientem stężeń, przez błony biologiczne wszystkich żywych komórek. Są one obecne we wszystkich błonach każdej żywej komórki.Substancja chemiczna (substancja czysta, chemikalia (tylko l.mn.)) – substancja jednorodna, o stałym, określonym składzie chemicznym, jakościowym (co do rodzaju atomów pod względem liczby atomowej i ewentualnie, co do poszczególnych rodzajów atomów w cząsteczce) i najczęściej także ilościowym (liczby atomów różnych rodzajów w cząsteczce); zbiór atomów lub cząsteczek spełniających kryterium stałości składu.


    Podstrony: 1 [2] [3] [4] [5] [6]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Gliceryna, glicerol (łac. Glycerolum) – organiczny związek chemiczny z grupy cukroli; najprostszy trwały alkohol trójwodorotlenowy (triol).
    Sedoheptulozo-7-fosforan – organiczny związek chemiczny, ester kwasu fosforowego z grupą hydroksylową znajdującą się przy 7 atomie węgla sedoheptulozy tego (cukru z grupy heptoz).
    Cykl kwasu cytrynowego, cykl kwasów trikarboksylowych (TCA) lub cykl Krebsa – cykliczny szereg reakcji biochemicznych. Stanowi końcowy etap metabolizmu aerobów, czyli organizmów oddychających tlenem. Mechanizm cyklu zbadał w latach 30. XX wieku sir Hans Krebs, a kluczowe elementy cyklu przedstawił w 1937, za co został nagrodzony w 1953 Nagrodą Nobla.
    Tellur (Te, łac. tellurium) – pierwiastek chemiczny, z grupy półmetali w układzie okresowym. Nazwa pochodzi od łacińskiej nazwy Ziemi – tellus.
    Kwas bursztynowy (według obecnej nomenklatury IUPAC kwas 1,4-butanodiowy, dawniej kwas 1,2-etanodikarboksylowy) – związek organiczny, kwas dikarboksylowy o wzorze (CH2COOH)2.
    β-oksydacja (β-oksydacja Knoopa) – szereg reakcji przekształcenia kwasów tłuszczowych w acetylokoenzym A (acetylo-CoA) w przypadku kwasów tłuszczowych o parzystej liczbie węgli oraz acetylo-CoA i propionylo-CoA, gdy liczba atomów węgla jest nieparzysta.
    Bakterie (łac. bacteria, od gr. bakterion – pałeczka) – grupa mikroorganizmów, stanowiących osobne królestwo. Są to jednokomórkowce lub zespoły komórek o budowie prokariotycznej. Badaniem bakterii zajmuje się bakteriologia, gałąź mikrobiologii.

    Reklama