• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Obszar

    Przeczytaj także...
    Przestrzeń euklidesowa – przestrzeń o geometrii euklidesowej. Jest ona naturalnym elementem modeli świata rzeczywistego (łac. geometria = mierzenie ziemi) i stanowi dobre przybliżenie przestrzeni fizycznych w warunkach makroskopowych, jednak nie nadaje się do opisu rzeczywistości w bardzo małych, atomowych, lub bardzo wielkich, astronomicznych, wielkościach. Jednowymiarowa przestrzeń euklidesowa nazywana jest prostą euklidesową, zaś dwuwymiarowa – płaszczyzną euklidesową. Przestrzenie te nazywa się również przestrzeniami afinicznymi euklidesowymi w odróżnieniu od przestrzeni liniowych euklidesowych, znanych szerzej jako przestrzenie unitarne.Przestrzeń topologiczna – podstawowe pojęcie topologii; zbiór wyposażony w strukturę (tzw. topologię) wyróżniającą pewną rodzinę jego podzbiorów (tzw. zbiory otwarte), co umożliwia określenie czy dany punkt leży „blisko”, czy „daleko” od danego podzbioru (w jego domknięciu lub poza nim) mimo braku pojęcia odległości (metryki).
    Brzeg – pojęcie topologiczno-geometryczne oddające i formalizujące intuicję punktów „granicznych” danego zbioru, czy figury, czy też „ograniczających” je.

    Obszarzbiór otwarty i spójny w przestrzeni euklidesowej lub ogólniej w przestrzeni topologicznej. Obszar domknięty to domknięcie obszaru (otwartego) .

    Droga – w topologii, ciągłe przekształcenie z przedziału jednostkowego w przestrzeń topologiczną. Pętlą nazywa się drogę, której początek i koniec pokrywają się. Ich parametr, szczególnie przy homotopiach, nazywa się niekiedy czasem.Okrąg – brzeg koła; zbiór wszystkich punktów płaszczyzny euklidesowej odległych od ustalonego punktu, nazywanego środkiem, o zadaną odległość, nazywaną promieniem.

    Zbiór domknięty nazywa się brzegiem obszaru Punkty nazywane są punktami wewnętrznymi obszaru a także punktami wewnętrznymi obszaru domkniętego Punkty nazywane są punktami brzegowymi obszaru a także punktami brzegowymi obszaru domkniętego .

    Linia łamana (polilinia, linia poligonowa, linia wielokątna lub krótko łamana) to w geometrii linia utworzona z ciągu odcinków (zwanych jej bokami) w taki sposób, żeAnaliza zespolona – dziedzina matematyki, w szczególności analizy matematycznej, obejmująca swą tematyką teorię funkcji zespolonych zmiennej rzeczywistej i zespolonej, jednej i wielu zmiennych – w tym bardzo rozbudowane teorie funkcji analitycznych, funkcji eliptycznych czy odwzorowań konforemnych. Ma zastosowania w teorii liczb, teorii fraktali, matematyce stosowanej, teorii przestrzeni Hilberta a także w pewnych dziedzinach fizyki.

    Pojęcia te mają podstawowe znaczenie w analizie zespolonej. Przykładami obszarów na płaszczyźnie zespolonej są: cała płaszczyzna, wnętrze kąta, koło otwarte (bez brzegu), prostokąt otwarty (bez brzegu). W szczególności obszarem jest też każdy zbiór otwarty, którego brzeg można opisać krzywą Jordana.

    Przedział – zbiór elementów danego zbioru częściowo uporządkowanego, zawartych między dwoma ustalonymi elementami tego zbioru, nazywanymi początkiem i końcem przedziału.Kąt (płaski) w geometrii euklidesowej – każda z dwóch części (tj. podzbiorów) płaszczyzny zawartych między dwiema półprostymi (wraz z nimi), nazwanymi ramionami, o wspólnym początku, zwanym wierzchołkiem. Czyli jest to część wspólna dwóch półpłaszczyzn wyznaczonych przez dwie nierównoległe proste, wraz z ich brzegami nazywanymi ramionami; ich punkt przecięcia to wierzchołek).
    Od lewej: obszar jednospójny, obszar trzyspójny, obszar czterospójny

    Obszar nazywa się obszarem jednospójnym, jeśli każdą zawartą w nim pętlę można w sposób ciągły zdeformować do punktu, pozostając cały czas w obszarze (pętla jest w ściągalna do punktu). Brzeg takiego obszaru ma wtedy jedną składową spójności. Ogólniej, brzeg obszaru może mieć składowych, gdzie Jeśli to obszar nazywa się obszarem wielospójnym. Liczba jest nazywana rzędem spójności. Jeśli obszar jest nazywany obszarem dwuspójnym, jeśli obszarem trzyspójnym itd. Jeśli to obszar nazywamy obszarem skończeniespójnym, a jeśli obszarem nieskończeniespójnym.

    Koło – zbiór wszystkich punktów płaszczyzny, których odległość od ustalonego punktu na tej płaszczyźnie (środka koła) nie przekracza pewnej wartości (promienia koła).Krzywa Jordana (albo łuk zwykły) – homeomorficzny obraz okręgu na płaszczyźnie. Definicja ta jest w pewnym sensie równoważna następującej:

    Przykłady[ | edytuj kod]

    Przykład obszaru, którego brzeg zawiera punkty niedostępne
  • Na prostej obszarami są przedziały liczbowe. Brzeg takiego obszaru jest zawsze zbiorem co najwyżej dwupunktowym.
  • Obszar nieskończeniespójny można uzyskać, usuwając z koła otwartego o promieniu 2 rozłączne koła domknięte o promieniach Brzeg tego obszaru jest sumą mnogościową okręgu koła o promieniu 2 i okręgów ograniczających usunięte koła.
  • Obszar jednospójny może mieć dość skomplikowany brzeg, zawierający punkty niedostępne w następującym sensie: nie istnieje krzywa ciągła gdzie jest przedziałem domkniętym na osi rzeczywistej, taka że obrazy wszystkich punktów przedziału, poza punktem (należącym do brzegu ), należą do obszaru Takimi punktami będą na przykład punkty prawego boku kwadratu na rysunku obok, z którego usunięto odcinki wychodzące prostopadle naprzemiennie z dolnego i górnego boku tego kwadratu, zbliżające się do prawego boku i o długościach dążących do długości boku kwadratu.
  • Każde dwa punkty obszaru położonego w płaszczyźnie zespolonej dają się połączyć łamaną.
  • Niech będzie obszarem. Dla każdego niech będzie zbiorem tych punktów obszaru które dadzą się połączyć z łamaną. Dla każdego zbiór jest zbiorem otwartym, bo jeśli to z punktem można połączyć łamaną każdy punkt kuli Z drugiej strony zbiór: jest również zbiorem otwartym, a zatem ze względu na spójność zbioru zbiór czyli .
  • Własność ta jest spełniona dla obszarów w przestrzeni euklidesowej oraz dla obszarów przestrzeni zespolonej przy czym istnieje wtedy łamana łącząca dwa punkty obszaru składająca się ze skończonej liczby odcinków.
  • Powyższa własność jest również spełniona dla obszaru każdej topologicznej przestrzeni wektorowej.
  • Każdy zbiór otwarty jest sumą obszarów, bo:
  • Przypisy[ | edytuj kod]

    1. Kazimierz Kuratowski: Wstęp do teorii mnogości i topologii. Wyd. 8. Warszawa: PWN, 1980, s. 256, seria: Biblioteka matematyczna (BM 9).
    2. Franciszek Leja: Teoria funkcji analitycznych. Wyd. 1. Warszawa: PWN, 1957, s. 24, seria: Biblioteka matematyczna (BM 14).
    3. Математическая энциклопедия. И.М. Виноградов (red.). Wyd. 1. T. 3, Коо-Од. Москва: Советская энциклопедия, 1982, s. 1098.
    4. Математическая энциклопедия, t. 3, Коо-Од, op. cit., s. 1098.
    5. А.И. Маркушевич: Теория аналитических функций. Wyd. 1. T. 1. Москва-Ленинград: ГИТТЛ, 1950, s. 406.
    6. Kuratowski, op. cit., s. 257.


    Przestrzeń spójna – w topologii przestrzeń topologiczna oddająca intuicję „składania się z jednego kawałka”, tzn. niemożność jej rozłożenia na sumę dwóch niepustych, rozłącznych podzbiorów otwartych. Istnieje silniejsze pojęcie przestrzeni spójnej drogowo, w której dowolne dwa punkty dają się połączyć drogą.Domknięcie – w topologii, operacja przyporządkowująca podzbiorowi przestrzeni topologicznej najmniejszy (w sensie inkluzji) zbiór domknięty zawierający ten podzbiór.



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Reklama

    Czas generowania strony: 0.089 sek.