• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Niesprzeczność



    Podstrony: 1 [2] [3]
    Przeczytaj także...
    Rachunek zdań – dział logiki matematycznej badający związki między zmiennymi zdaniowymi (zdaniami) lub funkcjami zdaniowymi, utworzonymi za pomocą funktorów zdaniotwórczych (spójników zdaniowych) ze zdań lub prostszych funkcji zdaniowych. Rachunek zdań określa sposoby stosowania funktorów zdaniotwórczych w poprawnym wnioskowaniu.Kurt Gödel (ur. 28 kwietnia 1906 w Brnie, zm. 14 stycznia 1978 w Princeton) – austriacki logik i matematyk, autor twierdzeń z zakresu logiki matematycznej, współautor jednej z aksjomatyk teorii mnogości. Do najbardziej znanych osiągnięć matematycznych Gödla należą twierdzenia o niezupełności i niesprzeczności teorii dedukcyjnych, które obejmują arytmetykę liczb naturalnych.

    Niesprzeczność – brak sprzeczności teorii logicznej. Można go zdefiniować semantycznie albo syntaktycznie. Definicja semantyczna postuluje, że teoria jest niesprzeczna, jeśli posiada model. Odpowiada to pojęciu niesprzeczności w tradycyjnej logice Arystotelesa, aczkolwiek w dzisiejszej logice matematycznej używa się w zamian określenia spełnialności. Definicja syntaktyczna mówi, że teoria jest niesprzeczna, jeśli nie ma takiej formuły P, że zarówno P jak i jej zaprzeczenie można wyprowadzić z aksjomatów danej teorii za pomocą powiązanego z nią systemu dedukcji.

    Formuła logiczna to określenie dozwolonego wyrażenia w wielu systemach logicznych, m.in. w rachunku kwantyfikatorów oraz w rachunku zdań.Struktura matematyczna (także model, system semantyczny, model semantyczny, dziedzina, struktura pierwszego rzędu) - w matematyce zbiór obiektów matematycznych połączonych w pewien system.

    Jeśli dane definicje semantyczne i syntaktyczne są równoważne, to mówi się, że dana logika jest zupełna. Zupełność rachunku zdań została wykazana przez Paula Bernaysa w 1918 roku i Emila Posta w 1921 roku, podczas gdy zupełność rachunku kwantyfikatorów została udowodniona przez Kurta Gödla w 1930 r. Silne logiki, takie jak rachunek predykatów drugiego rzędu, nie są zupełne.

    Twierdzenie Gödla to jeden z najbardziej znanych rezultatów logiki matematycznej. W istocie znane są dwa różne twierdzenia Gödla: pierwsze z nich to twierdzenie o niezupełności, drugie zaś to jego wniosek nazywany też twierdzeniem o niedowodliwości niesprzeczności. Oba twierdzenia zostały udowodnione w 1931 roku przez austriackiego matematyka i logika Kurta Gödla. Uważa się również, że twierdzenia te dają negatywną odpowiedź na drugi problem Hilberta, i w ten sposób mają spore znaczenie w filozofii matematyki. Oprócz rozpatrywanych w tym artykule twierdzeń, Gödel udowodnił też twierdzenie o istnieniu modelu i twierdzenie o nierozstrzygalności (patrz: teoria, struktura matematyczna).Logika matematyczna – dział matematyki, który wyodrębnił się jako samodzielna dziedzina na przełomie XIX i XX wieku, wraz z dążeniem do dogłębnego zbadania podstaw matematyki. Koncentruje się ona na analizowaniu zasad rozumowania oraz pojęć z nim związanych z wykorzystaniem sformalizowanych oraz uściślonych metod i narzędzi matematyki.

    Wczesny rozwój teorii dowodu był napędzany chęcią podania skończonych dowodów niesprzeczności dla całej matematyki w ramach programu Hilberta. Postulatami programu Hilberta wstrząsnęło twierdzenie Gödla o niedowodliwości niesprzeczności, które uzmysłowiło matematykom, że dostatecznie bogate teorie dowodzenia nie pozwalają na wykazanie niesprzeczności samych siebie (przy założeniu, że są one rzeczywiście niesprzeczne).

    Aksjomaty Zermelo-Fraenkela, w skrócie: aksjomaty ZF – powszechnie przyjmowany system aksjomatów zaproponowany przez Ernsta Zermelo w 1904 roku, który został później uzupełniony przez Abrahama Fraenkela.Formuła logiczna to określenie dozwolonego wyrażenia w wielu systemach logicznych, m.in. w rachunku kwantyfikatorów oraz w rachunku zdań.

    Pomimo iż niesprzeczność można wykazać za pomocą teorii modeli, to często robi się to opierając się wyłącznie na syntaktyce, bez odnoszenia się do modeli.

    Spis treści

  • 1 Formuły
  • 2 Niesprzeczność i zupełność arytmetyki
  • 3 Zobacz też
  • 4 Bibliografia
  • Ogólnie obiekt jest zupełny, gdy nie trzeba niczego do niego dodawać. To znaczenie jest uściślane w wielu dziedzinach.Emil Leon Post (ur. 11 lutego 1897 w Augustowie, zm. 21 kwietnia 1954 w Nowym Jorku) – amerykański matematyk i logik polskiego pochodzenia.


    Podstrony: 1 [2] [3]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Paul Isaac Bernays (ur. 17 października 1888 w Londynie, zm. 18 września 1977 w Zurychu), szwajcarski matematyk i logik pochodzenia brytyjskiego. Pracował na stanowisku profesora w Zurychu i Getyndze. Zasłynął jako współtwórca teorii dowodu i jednego z aksjomatycznych ujęć teorii mnogości, znanego jako teoria mnogości von Neumanna-Bernaysa-Gödla. Uważał on, że zbiór jest mnogością tworzącą rzeczywisty przedmiot matematyki, podczas gdy klasa jest orzecznikiem, branym pod uwagę tylko w odniesieniu do jego rozwinięcia. Był autorem takich prac, jak: Grundlagen der Mathematik (t. 1-2, 1934-39, z Davidem Hilbertem), Abhandlungen zur Philosophie der Mathematik (1976).
    Teoria modeli (nazywana też czasem semantyką logiczną) to dział logiki matematycznej zajmujący się badaniem własności modeli teorii aksjomatycznych i zależności między nimi. Dziedzina ta jest w znacznym stopniu powiązana z algebrą i teorią mnogości, ale ma też mocno rozbudowany własny aparat pojęciowy i w swojej współczesnej postaci jest w pełni samodzielną dziedziną wiedzy.
    Aksjomaty i konstrukcje liczb – metody ścisłego definiowania liczb używane w matematyce. Aksjomaty liczb to warunki, jakie muszą spełniać pewne obiekty oraz działania na nich, aby mogły być uznane za liczby danego rodzaju (np. liczby naturalne, liczby wymierne itp.). Konstrukcje liczb są algebrami, tak utworzonymi, aby spełniały właściwe danym liczbom aksjomaty.
    Rachunek predykatów pierwszego rzędu – (ang. first order predicate calculus) to system logiczny, w którym zmienna, na której oparty jest kwantyfikator, może być elementem pewnej wybranej dziedziny (zbioru), nie może natomiast być zbiorem takich elementów. Tak więc nie mogą występować kwantyfikatory typu "dla każdej funkcji z X na Y ..." (gdyż funkcja jest podzbiorem X × Y), "istnieje własność p, taka że ..." czy "dla każdego podzbioru X zbioru Z ...". Rachunek ten nazywa się też krótko rachunkiem kwantyfikatorów, ale często używa się też nazwy logika pierwszego rzędu (szczególnie wśród matematyków zajmujących się logiką matematyczną).
    W logice matematycznej teorią nazywamy niesprzeczny zbiór zdań. Dokładniej, niech T będzie zbiorem zdań zapisanych w pewnym języku L. Wtedy T jest teorią, jeśli nie istnieje zdanie napisane w języku L takie że T dowodzi zarówno tego zdania, jak i jego zaprzeczenia. Zbiór zdań T dowodzi zdania X, jeśli można przeprowadzić formalny dowód zdania X przy użyciu zdań ze zbioru T oraz aksjomatów i reguł dowodzenia klasycznego rachunku logicznego.
    Rachunek predykatów pierwszego rzędu – (ang. first order predicate calculus) to system logiczny, w którym zmienna, na której oparty jest kwantyfikator, może być elementem pewnej wybranej dziedziny (zbioru), nie może natomiast być zbiorem takich elementów. Tak więc nie mogą występować kwantyfikatory typu "dla każdej funkcji z X na Y ..." (gdyż funkcja jest podzbiorem X × Y), "istnieje własność p, taka że ..." czy "dla każdego podzbioru X zbioru Z ...". Rachunek ten nazywa się też krótko rachunkiem kwantyfikatorów, ale często używa się też nazwy logika pierwszego rzędu (szczególnie wśród matematyków zajmujących się logiką matematyczną).
    Prof. Jan Łukasiewicz (ur. 21 grudnia 1878 we Lwowie, zm. 13 lutego 1956 w Dublinie) – polski logik, matematyk, filozof, rektor Uniwersytetu Warszawskiego.

    Reklama

    Czas generowania strony: 0.036 sek.