Neutron termiczny
Rozszczepienie jądra atomowego to przemiana jądrowa polegająca na rozpadzie jądra na dwa (rzadziej na więcej) fragmenty o zbliżonych masach. Zjawisku towarzyszy emisja neutronów, a także kwantów gamma, które unoszą znaczne ilości energii. Ponieważ jądra ulegające rozszczepieniu zwykle są jądrami ciężkimi, które posiadają więcej neutronów niż protonów, obydwa fragmenty powstałe w rozszczepieniu są jądrami neutrono-nadmiarowymi. Nadmiar neutronów jest z nich emitowany podczas aktu rozszczepienia (neutrony natychmiastowe) lub z pewnym opóźnieniem (neutrony opóźnione).Izotopy – odmiany pierwiastka chemicznego różniące się liczbą neutronów w jądrze atomu (z definicji atomy tego samego pierwiastka mają tę samą liczbę protonów w jądrze). Izotopy tego samego pierwiastka różnią się liczbą masową (łączną liczbą neutronów i protonów w jądrze), ale mają tę samą liczbę atomową (liczbę protonów w jądrze).
Kilometr (symbol: km) – powszechnie stosowana wielokrotność metra, podstawowej jednostki długości w układzie SI. Dokładniej, kilometr to 1000 metrów. Stowarzyszona i dość często używana jednostka powierzchni to kilometr kwadratowy (symbol: km²), a objętości – kilometr sześcienny (symbol: km³).
Neutrony termiczne – neutrony o energii kinetycznej porównywalnej z energią ruchu cieplnego w temperaturze zbliżonej do pokojowej T = 295 K, jest to energia równa
gdzie: – temperatura neutronu, – stała Boltzmanna.
Temperaturę neutronu można powiązać z jego wektorem falowym, poprzez związek wektora falowego z pędem. Otrzyma się wówczas wzór:
gdzie:
Neutron termiczny w przybliżeniu ma energię 25 meV, prędkość 2,2 km/s, długość fali 1,8 Å i temperaturę 20 °C.
Najważniejszym zastosowaniem neutronów termicznych jest udział w reakcji rozszczepiania jąder uranu. Przekrój czynny na rozszczepienie izotopu uranu U ma strukturę rezonansową, a jego maksimum występuje dla energii neutronu 0,025 eV, gdzie wartość przekroju wynosi 577 b.
Neutrony emitowane po rozszczepieniu jąder uranu mają zbyt duże energie, by powodować reakcje łańcuchowe. Aby je spowolnić do około 0,025 eV (2,2 km/s) stosuje się tzw. moderator, czyli ośrodek materialny, przez który przechodzą neutrony i ulegają moderacji. Moderacja polega na dostosowaniu temperatury (ustaleniu równowagi termodynamicznej poprzez zderzenia elastyczne neutronów z jądrami moderatora) neutronów do temperatury moderatora. Moderatorem neutronów termicznych jest najczęściej woda destylowana będąca w obiegu zamkniętym, która schładzana jest na zewnątrz reaktora poprzez chłodnie kominowe.
Neutronów termicznych używa się głównie do badań ciała stałego. Badania te polegają na wykorzystaniu zjawiska dyfrakcji neutronów na sieci krystalicznej badanej substancji.
Długość fali neutronu termicznego porównywalna jest z odległościami międzyatomowymi w substancji. Dzięki temu, neutrony bardzo dobrze nadają się do badania struktur krystalicznych i, z racji tego, że neutron posiada moment magnetyczny, struktur magnetycznych.
Energia kinetyczna neutronu termicznego porównywalna jest z energiami elementarnych wzbudzeń sieci krystalicznej (fononów) i sieci magnetycznej (magnonów). Dzięki rozpraszaniu nieelastycznemu neutronów, można badać kreację i anihilację fononów i magnonów, przez co zyskuje się wiedzę o własnościach badanego materiału.