• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  •                  Informacje o badaniu         Biorę udział       Nie obchodzi mnie to 

    Największy wspólny dzielnik



    Podstrony: 1 [2] [3] [4]
    Przeczytaj także...
    Elementy (gr. Στοιχεῖα, Stoicheia) – pochodzący z IV wieku p.n.e. traktat arytmetyczny i geometryczny, obejmujący swym zakresem podstawowe zagadnienia obu tych nauk.Wartość bezwzględna a. moduł – dla danej liczby rzeczywistej wartość liczbowa nieuwzględniająca znaku liczby. Przykładowo Parser nie mógł rozpoznać (Nie można zapisać obrazu z wzorem w systemie plików.): 5

    Największy wspólny dzielnik – dla danych dwóch (lub więcej) liczb całkowitych największa liczba naturalna dzieląca każdą z nich. Pojęcie to ma wiele uogólnień, które przedstawiono w dalszej części artykułu.

    Podstawowe twierdzenie arytmetyki – ważne twierdzenie teorii liczb o rozkładzie liczb naturalnych na czynniki pierwsze.Liczba pierwsza – liczba naturalna większa od 1, która ma dokładnie dwa dzielniki naturalne: jedynkę i siebie samą, np.

    Największy wspólny dzielnik liczb i zapisuje się zwykle lub , czasem po prostu . Np. oraz

    Wielomian – wyrażenie algebraiczne złożone ze zmiennych i stałych połączonych działaniami dodawania, odejmowania, mnożenia i podnoszenia do potęgi o stałym wykładniku naturalnym.Funkcja multiplikatywna – W teorii liczb, funkcję arytmetyczną f określoną na zbiorze liczb naturalnych nazywamy multiplikatywną, jeżeli dla wszystkich względnie pierwszych liczb m, n spełniony jest warunek

    Dwie liczby nazywa się względnie pierwszymi, jeżeli ich największym wspólnym dzielnikiem jest . Np. względnie pierwsze są i .

    Pojęcie największego wspólnego dzielnika wykorzystuje się podczas redukcji ułamków do postaci nieskracalnej (tzn. takiej, w której licznik i mianownik są względnie pierwsze). Przykładowo największym wspólnym dzielnikiem liczb oraz jest stąd

    Łączność – jedna z własności działań dwuargumentowych, czyli np. operatorów arytmetycznych. Pojęcie to występuje w dwóch znaczeniach.Podzbiór – pewna „część” danego zbioru, czyli dla danego zbioru, nazywanego nadzbiorem, zbiór składający się z pewnej liczby jego elementów, np. żadnego, jednego, wszystkich. Pierwszy przypadek nazywa się podzbiorem pustym, drugi – podzbiorem jednoelementowym lub singletonem, trzeci – podzbiorem niewłaściwym.

    Definicje[]

     Zapoznaj się również z: dzielnik.

    Jeśli nie zaznaczono inaczej, słowo „liczba” będzie oznaczać dalej liczbę całkowitą. Przedstawiona we wstępie definicja wymaga formalizacji: w szczególności należy wytłumaczyć, czym jest dzielnik liczby, co oznacza, że jest on wspólny dla danych liczb i w jaki sposób wskazać największy z nich.

    Twierdzenie o dzieleniu z resztą – twierdzenie matematyczne mówiące o możliwości przedstawienia danej liczby całkowitej, dzielnej, w postaci sumy iloczynu ilorazu przez (niezerowy) dzielnik oraz reszty. Innymi słowy twierdzenie mówi, ile razy (iloraz) dana liczba (dzielnik) mieści się w całości w innej (dzielna) oraz jaka część (reszta) tej liczby nie została wydzielona. Stosuje się także skróconą wersję nazwy: twierdzenie o dzieleniu.Zbiór – pojęcie pierwotne teorii zbiorów (znanej szerzej jako teoria mnogości; za jej twórcę uważa się Georga Cantora) leżące u podstaw całej matematyki; intuicyjnie jest to nieuporządkowany zestaw różnych obiektów, czy też kolekcja niepowtarzających się komponentów bez wyróżnionej kolejności.

    Otóż liczba jest dzielnikiem liczby jeśli istnieje taka liczba dla której zachodzi fakt ten zapisuje się Liczbę nazywa się wspólnym dzielnikiem liczb oraz jeśli dzieli ona obie z nich.

    Rozdzielność działań jest własnością pierścienia (a więc i ciała) określającą powiązanie dwóch operatorów: addytywnego (nazywanego zwykle dodawaniem) i multiplikatywnego (zwykle mnożenie).Arytmetyka (łac. arithmetica, gr. αριθμητική arithmētikē, od αριθμητικός arithmētikos – arytmetyczna, od αριθμειν arithmein – liczyć, od αριθμός arithmós – liczba; spokr. ze staroang. rīm – liczba, i być z gr. αραρισκειν arariskein – pasować) – jedna z najstarszych część matematyki. W powszechnym użyciu słowo to odnosi się do zasad opisujących podstawowe działania na liczbach (arytmetyka elementarna).

    Największym wspólnym dzielnikiem liczb nazywa się taką nieujemną liczbę oznaczaną która jest wspólnym dzielnikiem oraz a przy tym każdy wspólny dzielnik i dzieli Symbolicznie można to wyrazić następująco: gdy

    Pierścień noetherowski – taki pierścień R {displaystyle R} przemienny z jedynką, którego każdy ideał właściwy jest skończenie generowany. Oznacza to, że dla każdego ideału I {displaystyle I} pierścienia R {displaystyle R} istnieją takie elementy Parser nie mógł rozpoznać (MathML z przejściem w SVG lub PNG (zalecane dla nowoczesnych przeglądarek i narzędzi zwiększenia dostępności): Invalid response ("Math extension cannot connect to Restbase.") from server "/mathoid/local/v1/":): a_{1},a_{2},ldots ,a_{k}in R , żeLiczby całkowite – liczby naturalne dodatnie N + = { 1 , 2 , 3 , … } {displaystyle mathbb {N} _{+}={1,2,3,dots }} oraz liczby przeciwne do nich { − 1 , − 2 , − 3 , … } {displaystyle {-1,-2,-3,dots }} , a także liczba zero. Uogólnieniem liczb całkowitych są liczby wymierne i tym samym liczby rzeczywiste, szczególnym przypadkiem liczb całkowitych są: liczby naturalne.
  • i oraz
  • jeśli i to dla dowolnej liczby
  • Największy wspólny dzielnik liczb i może być równoważnie zdefiniowany jako najmniejsza nieujemna liczba którą można przedstawić w postaci tożsamości Bézouta:

    Ciąg – w matematyce pojęcie oddające intuicję ponumerowania, czy też uporządkowania elementów zbioru. W zależności od rodzaju elementów zbioru stosuje się różne nazwy: w przypadku liczb mówi się o ciągach liczbowych, bądź bardziej precyzyjnie, np. w przypadku zbioru liczb całkowitych, rzeczywistych czy zespolonych, ciąg nazywa się wtedy odpowiednio ciągiem całkowitoliczbowym, rzeczywistym i zespolonym. Jeśli elementami zbioru są funkcje, to ciąg nazywa się ciągiem funkcyjnym. Ciąg powstały poprzez wybranie elementów innego ciągu nazywa się podciągiem.Najmniejsza wspólna wielokrotność dwóch lub więcej liczb naturalnych a1, a2,... ,an - najmniejsza liczba naturalna ze zbioru wszystkich liczb naturalnych, których dzielnikiem jest każda z liczb a1,...,an, i na przykład dla liczb 15 i 240 jest to liczba 240, a dla liczb 192 i 348 - liczba 5568. Najmniejszą wspólną wielokrotność oznacza się często symbolem NWW(a1,...,an).

    dla pewnych liczb całkowitych i – liczby te można wyznaczyć za pomocą rozszerzonego algorytmu Euklidesa.

    Kraty (ang. lattice) są strukturami matematycznymi, które można opisywać albo algebraicznie, albo w sensie częściowych porządków:Permutacja – wzajemnie jednoznaczne przekształcenie pewnego zbioru na siebie. Najczęściej termin ten oznacza funkcję na zbiorach skończonych.

    Definicję największego wspólnego dzielnika można rozszerzyć na dowolną, skończoną liczbę argumentów za pomocą indukcji matematycznej; można go traktować jako przypadek szczególny rozszerzenia tego pojęcia na nieskończoną liczbę argumentów: największym wspólnym dzielnikiem dowolnego zbioru liczb całkowitych nazywa się taką nieujemną liczbę dla której spełnione są warunki

    Liczby naturalne – liczby służące podawaniu liczności (trzy osoby, zob. liczebnik główny/kardynalny) i ustalania kolejności (trzecia osoba, zob. liczebnik porządkowy), poddane w matematyce dalszym uogólnieniom (odpowiednio: liczby kardynalne, liczby porządkowe). Badaniem własności liczb naturalnych zajmują się arytmetyka i teoria liczb. Według finitystów, zwolenników skrajnego nurtu filozofii matematyki, są to jedyne liczby, jakimi powinna zajmować się matematyka - słynne jest stwierdzenie propagatora arytmetyzacji wszystkich dziedzin matematyki Leopolda Kroneckera: Liczby całkowite stworzył dobry Bóg. Reszta jest dziełem człowieka.Stopień jednomianu – suma wszystkich wykładników potęg przy zmiennych niezerowego jednomianu, np. jednomian x y = x 1 y 1 {displaystyle xy=x^{1}y^{1}} jest stopnia drugiego.
  • dla każdego
  • jeżeli dla każdego to dla każdej liczby
  • Wówczas jeżeli jest zbiorem skończonym składającym się z elementów to największy wspólny dzielnik zbioru oznacza się symbolem .

    Pierścień – struktura formalizująca własności algebraiczne liczb całkowitych oraz arytmetyki modularnej; intuicyjnie zbiór, którego elementy mogą być bez przeszkód dodawane, odejmowane i mnożone, lecz niekoniecznie dzielone. Badanie pierścieni umożliwiło uogólnienie innych pojęć matematycznych takich, jak np. liczby pierwsze (przez ideały pierwsze), wielomiany, ułamki oraz rozwinięcie teorii podzielności i wskazania przy tym najogólniejszej struktury, w której możliwe jest stosowanie algorytmu Euklidesa (tzw. pierścień Euklidesa). Dział matematyki opisujący te struktury nazywa się teorią pierścieni.Dziesiętny system liczbowy (system dziesiątkowy, system decymalny (skrót dec), system arabski) – pozycyjny system liczbowy, w którym podstawą pozycji są kolejne wielokrotności liczby 10; do zapisu liczb potrzebne jest w nim 10 cyfr, którymi są 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Liczby zapisuje się jako ciąg cyfr, z których każda jest mnożnikiem kolejnej potęgi liczby stanowiącej podstawę systemu, niekiedy grupowanych po trzy (Okcydent) lub cztery (część Orientu). Część całkowitą i ułamkową oddziela separator dziesiętny.


    Podstrony: 1 [2] [3] [4]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Matematyka konkretna - tytuł książki autorstwa Ronalda Grahama, Donalda Knutha i Orena Patashnika, a zarazem nazwa pewnego ruchu matematycznego i działu matematyki ściśle powiązanego z matematyką stosowaną.
    Dzielnik zera – element a {displaystyle a} pierścienia taki, dla którego istnieje niezerowy element b {displaystyle b} spełniający a b = 0 {displaystyle ab=0} .
    Uniwersytet Karola w Pradze (czes. Univerzita Karlova v Praze) – uniwersytet w Pradze, założony w 1348 przez króla Czech Karola IV Luksemburskiego, najstarszy uniwersytet w Europie Środkowej.
    Zbiór skończony − zbiór o skończonej liczbie elementów. Nieujemną liczbę naturalną określającą ilość elementów zbioru skończonego nazywa się mocą zbioru. Zbiór skończony ma moc skończoną. Najmniejszym zbiorem skończonym jest zbiór pusty  Ø.
    Kraty (ang. lattice) są strukturami matematycznymi, które można opisywać albo algebraicznie, albo w sensie częściowych porządków:
    Liczby względnie pierwsze – liczby całkowite, które nie mają innych poza jedynką wspólnych dzielników w rozkładzie na czynniki pierwsze lub, równoważnie, ich największym wspólnym dzielnikiem jest jedność; te, w których żadna para nie ma wspólnych dzielników w rozkładzie poza jedynką lub, równoważnie, których największy wspólny dzielnik dla dowolnej pary wynosi jeden, nazywa się parami względnie pierwszymi.
    Pierścień z jednoznacznością rozkładu (pierścień Gaussa, UFD, od ang. unique factorization domain) – pierścień przemienny, którego każdy element nieodwracalny może być przedstawiony jako iloczyn elementów pierwszych w jednoznaczny sposób, tzn. jednoznaczny co do permutacji czynników. Pierścienie te uogólniają pierścień liczb całkowitych w ten sposób, że spełniają one także tezę podstawowego twierdzenia arytmetyki.

    Reklama