• Artykuły
  • Forum
  • Ciekawostki
  • Encyklopedia
  • Mnożenie



    Podstrony: [1] 2 [3] [4] [5]
    Przeczytaj także...
    Mnożenie przez skalar − jedno z działań dwuargumentowych definiujących przestrzeń liniową w algebrze liniowej (lub ogólniej: moduł w algebrze ogólnej). Mnożenia wektora przez skalar dającego w wyniku wektor nie należy mylić z iloczynem skalarnym (nazywanym niekiedy iloczynem wewnętrznym) dwóch wektorów dającym w wyniku skalar.Wartość bezwzględna a. moduł – dla danej liczby rzeczywistej wartość liczbowa nieuwzględniająca znaku liczby. Przykładowo Parser nie mógł rozpoznać (Nie można zapisać obrazu z wzorem w systemie plików.): 5
    Mnożenie pisemne liczb[]

    Przykład[]

    Algorytm pisemnego mnożenia najłatwiej wytłumaczyć na przykładzie. Obliczymy iloczyn liczb i . Należy zapisać jedną z liczb pod drugą tak, by cyfry oznaczające odpowiednio jedności, dziesiątki, setki itp. znajdowały się w jednej kolumnie (mniej precyzyjnie: wyrównać cyfry obu liczb do prawej):

    Ułamek dziesiętny – zapis liczby rzeczywistej w postaci ułamka, którego mianownik jest potęgą o wykładniku naturalnym liczby 10.Łączność – jedna z własności działań dwuargumentowych, czyli np. operatorów arytmetycznych. Pojęcie to występuje w dwóch znaczeniach.


    Następnie mnoży się poszczególne cyfry i zapisuje jedna pod drugą na odpowiedniej pozycji: jeżeli przyjąć, że pozycje cyfr numerowane są od prawej począwszy od zera, to cyfra dziesiątek i cyfra jednostek iloczynu dwóch cyfr powinny być zapisywane na pozycji będącej sumą pozycji mnożonych cyfr i o jeden mniejszej (jeżeli cyfra dziesiątek jest zerem, to zwykle się jej nie pisze). W ten sposób (mnożąc kolejno od prawej cyfry drugiej liczby przez kolejne cyfry pierwszej liczby):

    Grupa – jedna ze struktur algebraicznych: zbiór niepusty, na którym określono pewne łączne działanie dwuargumentowe wewnętrzne, dla którego istnieje element odwrotny do każdego elementu oraz element neutralny. Można powiedzieć, że grupą jest monoid, w którym każdy element ma element odwrotny. Dział matematyki badający własności grup nazywa się teorią grup.Systemy pozycyjne – metody zapisywania liczb (in. systemy liczbowe) w taki sposób, że w zależności od pozycji danej cyfry w ciągu, oznacza ona wielokrotność potęgi pewnej liczby uznawanej za bazę danego systemu. Np. powszechnie używa się systemu dziesiętnego, w którym za bazę przyjmuje się liczbę dziesięć. Tym samym napis 46532 oznacza 4 × 10 4 + 6 × 10 3 + 5 × 10 2 + 3 × 10 1 + 2 × 10 0 = 46532 {displaystyle 4 imes 10^{4}+6 imes 10^{3}+5 imes 10^{2}+3 imes 10^{1}+2 imes 10^{0}=46532} .

    Suma tak zapisanych iloczynów cyfr (przyjmując, że puste miejsca oznaczają zera) daje wynik:

    Rozdzielność działań jest własnością pierścienia (a więc i ciała) określającą powiązanie dwóch operatorów: addytywnego (nazywanego zwykle dodawaniem) i multiplikatywnego (zwykle mnożenie).Przestrzeń liniowa lub wektorowa – w matematyce zbiór obiektów (nazywanych "wektorami"), które mogą być, nieformalnie rzecz ujmując, skalowane i dodawane. Formalnie jest to zbiór z określonymi dwoma działaniami: dodawaniem elementów tej przestrzeni (wektorów) i mnożeniem przez elementy ustalonego ciała, które związane są ze sobą poniższymi aksjomatami. Przestrzenie liniowe to podstawowy obiekt badań algebry liniowej i analizy funkcjonalnej. Znajdują zastosowanie niemal we wszystkich gałęziach matematyki, naukach ścisłych i inżynierii.

    Mnożenie liczb całkowitych przebiega podobnie, z tym iż mnoży się wartości bezwzględne, tzn. liczby bez znaku, i uzupełnia znak iloczynu minusem, jeżeli dokładnie jedna z nich była ujemna.

    Mnożenie macierzy – w matematyce operacja mnożenia macierzy przez skalar lub inną macierz. Artykuł zawiera opis różnorodnych sposobów przeprowadzania ich mnożenia.Klawiatura komputerowa – uporządkowany zestaw klawiszy służący do ręcznego sterowania urządzeniem lub ręcznego wprowadzania danych. W zależności od spełnianej funkcji klawiatura zawiera różnego rodzaju klawisze – alfabetyczne, cyfrowe, znaków specjalnych, funkcji specjalnych, o znaczeniu definiowanym przez użytkownika.

    Jeżeli jeden (lub oba) z czynników jest pewną wielokrotnością liczby 10, tzn. na jej końcu znajduje się pewna liczba zer (np. 10500·180), to zera te można pominąć w czynnikach i dopisać do iloczynu – zamiast


    oblicza się iloczyn

    Liczby całkowite – liczby naturalne dodatnie N + = { 1 , 2 , 3 , … } {displaystyle mathbb {N} _{+}={1,2,3,dots }} oraz liczby przeciwne do nich { − 1 , − 2 , − 3 , … } {displaystyle {-1,-2,-3,dots }} , a także liczba zero. Uogólnieniem liczb całkowitych są liczby wymierne i tym samym liczby rzeczywiste, szczególnym przypadkiem liczb całkowitych są: liczby naturalne.Silnią liczby naturalnej n (w notacji matematycznej: n!, co czytamy „n silnia”) nazywamy iloczyn wszystkich liczb naturalnych nie większych niż n. Oznaczenie n! wprowadził w 1808 roku Christian Kramp.

    To uproszczenie rachunku opiera się na wykorzystaniu łączności i przemienności mnożenia:

    Multyplikacją w siedemnastowiecznej i późniejszej polszczyźnie nazywano działanie mnożenia, podobnie jak numeracją nazywano liczenie, dywizją – dzielenie, frakcją – ułamek.Struktura matematyczna (także model, system semantyczny, model semantyczny, dziedzina, struktura pierwszego rzędu) - w matematyce zbiór obiektów matematycznych połączonych w pewien system.

    Podobnie z ułamkami w zapisie dziesiętnym: jeśli czynniki zawierają przecinek (np. 1,05 · 1,8), należy wykonać mnożenie tak, jakby w ich zapisie nie było przecinka, po czym umieścić przecinek tak, by po jego prawej stronie pozostało tyle cyfr, ile ich było za przecinkami łącznie w obu czynnikach:

    Działania arytmetyczne – zwyczajowa nazwa czterech spośród działań algebraicznych: dodawania, odejmowania, mnożenia i dzielenia.Liczby naturalne – liczby służące podawaniu liczności (trzy osoby, zob. liczebnik główny/kardynalny) i ustalania kolejności (trzecia osoba, zob. liczebnik porządkowy), poddane w matematyce dalszym uogólnieniom (odpowiednio: liczby kardynalne, liczby porządkowe). Badaniem własności liczb naturalnych zajmują się arytmetyka i teoria liczb. Według finitystów, zwolenników skrajnego nurtu filozofii matematyki, są to jedyne liczby, jakimi powinna zajmować się matematyka - słynne jest stwierdzenie propagatora arytmetyzacji wszystkich dziedzin matematyki Leopolda Kroneckera: Liczby całkowite stworzył dobry Bóg. Reszta jest dziełem człowieka.


    To uproszczenie także opiera się na przemienności i łączności mnożenia:

    1 (jeden, jedność) – liczba naturalna następująca po 0 i poprzedzająca 2. 1 jest też cyfrą wykorzystywaną do zapisu liczb w różnych systemach, np. w dwójkowym (binarnym), ósemkowym, dziesiętnym i szesnastkowym systemie liczbowym. Każda liczba całkowita jest podzielna przez 1.Pierścień – struktura formalizująca własności algebraiczne liczb całkowitych oraz arytmetyki modularnej; intuicyjnie zbiór, którego elementy mogą być bez przeszkód dodawane, odejmowane i mnożone, lecz niekoniecznie dzielone. Badanie pierścieni umożliwiło uogólnienie innych pojęć matematycznych takich, jak np. liczby pierwsze (przez ideały pierwsze), wielomiany, ułamki oraz rozwinięcie teorii podzielności i wskazania przy tym najogólniejszej struktury, w której możliwe jest stosowanie algorytmu Euklidesa (tzw. pierścień Euklidesa). Dział matematyki opisujący te struktury nazywa się teorią pierścieni.

    Uwaga: Mnożyć sposobem pisemnym można tylko w systemach pozycyjnych.

    Przedział – zbiór elementów danego zbioru częściowo uporządkowanego, zawartych między dwoma ustalonymi elementami tego zbioru, nazywanymi początkiem i końcem przedziału.Działanie dwuargumentowe a. binarne – w algebrze działanie algebraiczne o argumentowości równej 2, czyli funkcja przypisująca dwóm elementom inny; wszystkie elementy mogą pochodzić z innych zbiorów.

    Algorytm[]

    Sam algorytm mnożenia pisemnego polega na zapisaniu liczby naturalnej w postaci sumy kolejnych potęg dziesiątki. Niech i , .

    Wówczas

    Zbiór – pojęcie pierwotne teorii zbiorów (znanej szerzej jako teoria mnogości; za jej twórcę uważa się Georga Cantora) leżące u podstaw całej matematyki; intuicyjnie jest to nieuporządkowany zestaw różnych obiektów, czy też kolekcja niepowtarzających się komponentów bez wyróżnionej kolejności.Szkoła podstawowa – pierwszy etap formalnej edukacji. W większości krajów nauka w szkole podstawowej jest obowiązkowa. Nauczanie poza szkołą tzw. edukacja domowa legalne jest m.in. w krajach anglosaskich, w Chile i na Tajwanie.

    przy czym trzecia równość odpowiada mnożeniu poszczególnych cyfr, a ostatnia – końcowemu sumowaniu.

    Kwaterniony – struktura algebraiczna (liczby) będąca rozszerzeniem ciała liczb zespolonych. Kwaterniony zostały wprowadzone przez irlandzkiego matematyka Williama Hamiltona w 1843 i służyły opisowi mechaniki w przestrzeni trójwymiarowej. Początkowo kwaterniony były uważane za twór patologiczny, ponieważ nie spełniały reguły przemienności (należy mieć na uwadze, iż kwaterniony pojawiły się przed macierzami). Kwaterniony znajdują zastosowanie tak w matematyce teoretycznej jak i stosowanej, zobacz sekcję Zastosowania.Zbiór liczb rzeczywistych – uzupełnienie zbioru liczb wymiernych. Zbiór liczb rzeczywistych zawiera m.in. liczby naturalne, ujemne, całkowite, pierwiastki liczb dodatnich, wymierne, niewymierne, przestępne, itd. Z drugiej strony na liczby rzeczywiste można też patrzeć jak na szczególne przypadki liczb zespolonych.

    Definicje[]

    W dobrze znanych zbiorach liczbowych mnożenie definiowane jest osobno w każdym z nich za pomocą działania zdefiniowanego w prostszej strukturze:

  • iloczyn dwóch liczb naturalnych definiuje się jako -krotną sumę : .
  • można to zdefiniować rekurencyjnie:
  • iloczyn dwóch liczb całkowitych i , gdzie określony jest wzorem ;
  • iloczyn dwóch liczb wymiernych i , gdzie , a określony jest wzorem ;
  • iloczyn dwóch liczb rzeczywistych i określa się następująco:
  • W zbiorze ciągów Cauchy'ego liczb wymiernych wprowadza się relację równoważności: gdy ciąg jest zbieżny do zera. Niech będą ciągami Cauchy'ego liczb wymiernych, wówczas ciąg także jest ciągiem Cauchy'ego liczb wymiernych. Dowodzi się, że niezależnie od wyboru ciągów zachodzi . Klasa abstrakcji reprezentanta jest iloczynem liczb utożsamianych z klasami reprezentantów .
  • iloczyn dwóch liczb zespolonych określony jest wzorem
  • .

    Oznaczenia[]

    Mnożenie oznacza się na ogół symbolem kropki, np. , czasami w miejsce kropki używa się znaku obróconego krzyżyka: , zaś w informatyce, z racji łatwej dostępności na klawiaturze komputera, przyjęło się używanie asterysku: a = b * c.

    Monoid - półgrupa, której działanie ma element neutralny. Formalnie, monoid to algebra ( S , e , ∗ ) {displaystyle (S,e,*)} , sygnatury ( 0 , 2 ) {displaystyle (0,2)} , gdzie S jest niepustym zbiorem, natomiastOktawy Cayleya, oktoniony (łac. octo – osiem), liczby Cayleya – rozszerzenie kwaternionów stanowiące niełączną algebrę. Zostały równolegle odkryte przez dwóch matematyków: Johna T. Gravesa w roku 1843 i Arthura Cayleya w roku 1845.

    Jeśli nie prowadzi to do nieporozumień, symbol mnożenia w zapisie matematycznym często pomija się, np. zamiast pisze się .

    Dziesiętny system liczbowy (system dziesiątkowy, system decymalny (skrót dec), system arabski) – pozycyjny system liczbowy, w którym podstawą pozycji są kolejne wielokrotności liczby 10; do zapisu liczb potrzebne jest w nim 10 cyfr, którymi są 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Liczby zapisuje się jako ciąg cyfr, z których każda jest mnożnikiem kolejnej potęgi liczby stanowiącej podstawę systemu, niekiedy grupowanych po trzy (Okcydent) lub cztery (część Orientu). Część całkowitą i ułamkową oddziela separator dziesiętny.Potęgowanie – działanie dwuargumentowe będące uogólnieniem wielokrotnego mnożenia elementu przez siebie. Potęgowany element nazywa się podstawą, zaś liczba mnożeń, zapisywana zwykle w indeksie górnym po prawej stronie podstawy, nosi nazwę wykładnika. Wynik potęgowania to potęga elementu.


    Podstrony: [1] 2 [3] [4] [5]



    w oparciu o Wikipedię (licencja GFDL, CC-BY-SA 3.0, autorzy, historia, edycja)

    Warto wiedzieć że... beta

    Tabliczka mnożenia – tabelaryczny sposób zestawienia wyników mnożenia przez siebie liczb naturalnych. Najczęściej w formie kwadratowej tablicy (macierzy), w której kolejne wiersze i kolejne kolumny odpowiadają kolejnym liczbom mnożonym przez siebie, a gdzie na skrzyżowaniu wierszy i kolumn znajdują się wyniki mnożenia. Najczęściej spotykana jest tabliczka "do stu", o dziesięciu kolumnach i dziesięciu wierszach, w której na skrzyżowaniu dziesiątego wiersza i dziesiątej kolumny znajduje się wynik mnożenia 10×10=100.
    Ciało – struktura formalizująca własności algebraiczne liczb wymiernych, czy liczb rzeczywistych. W trakcie badań nad tymi obiektami rozwinął się aparat matematyczny (tzw. teoria Galois) umożliwiający rozwiązanie takich problemów jak rozwiązalność równań wielomianowych (jednej zmiennej) przez tzw. pierwiastniki (działania obowiązujące w ciałach i wyciąganie pierwiastków), czy wykonalność pewnych konstrukcji klasycznych (konstrukcji geometrycznych, w których dozwolone jest korzystanie z wyidealizowanych cyrkla i linijki). Działem matematyki zajmującym się opisem tych struktur jest teoria ciał.
    Iloczyn skalarny – w matematyce pewna forma dwuliniowa na danej przestrzeni liniowej, tj. dwuargumentowa funkcja o szczególnych własnościach przyporządkowująca dwóm wektorom danej przestrzeni liniowej wartość skalarną. Czasami spotyka się również nazwę iloczyn wewnętrzny, który zwykle odnosi się jednak do ogólnych iloczynów skalarnych wprowadzanych w abstrakcyjnych przestrzeniach liniowych nazywanych wtedy przestrzeniami unitarnymi; przestrzenie afiniczne z wyróżnionym iloczynem skalarnym nazywa się przestrzeniami euklidesowymi.
    Definicja intuicyjna: Ułamki liczb całkowitych o niezerowym mianowniku; liczby rzeczywiste mające skończone, bądź okresowe od pewnego miejsca rozwinięcie dziesiętne.
    Liczba – pojęcie abstrakcyjne, jedno z najczęściej używanych w matematyce. Pierwotnie liczby służyły do porównywania wielkości zbiorów przedmiotów (liczby naturalne), później także wielkości ciągłych (miary i wagi), obecnie w matematyce są rozważane jako twory abstrakcyjne, w oderwaniu od ewentualnych fizycznych zastosowań.
    Element neutralny – w algebrze element struktury algebraicznej, który dla danego działania dwuargumentowego przyłożony do dowolnego elementu nie zmieni go.

    Reklama

    Czas generowania strony: 0.133 sek.